New efficient speed-up scheme for cascade implementation of SVM classifier

Jeonghyun Baek, Jisu Kim, Junhyuk Hyun, Euntai Kim
{"title":"New efficient speed-up scheme for cascade implementation of SVM classifier","authors":"Jeonghyun Baek, Jisu Kim, Junhyuk Hyun, Euntai Kim","doi":"10.1109/IJCNN.2015.7280810","DOIUrl":null,"url":null,"abstract":"For intelligent vehicle applications, detecting pedestrian technique must be robust and perform in real time. In pedestrian detection, support vector machine (SVM) is one of the popular classifiers because of its robust performance. In this paper, we propose the new method to implement cascade SVM that enables fast rejection of negative samples. The proposed method is tested with INRIA person dataset and show better rejection performance of negative samples than conventional method.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For intelligent vehicle applications, detecting pedestrian technique must be robust and perform in real time. In pedestrian detection, support vector machine (SVM) is one of the popular classifiers because of its robust performance. In this paper, we propose the new method to implement cascade SVM that enables fast rejection of negative samples. The proposed method is tested with INRIA person dataset and show better rejection performance of negative samples than conventional method.
一种新的支持向量机分类器级联实现的高效加速方案
在智能车辆应用中,行人检测技术必须具有鲁棒性和实时性。在行人检测中,支持向量机(SVM)因其鲁棒性而成为常用的分类器之一。在本文中,我们提出了一种新的方法来实现串级支持向量机,使负样本的快速拒绝。用INRIA人数据集对该方法进行了测试,结果表明该方法对负样本的抑制效果优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信