Demitri Shotwell, Mong-Tung Lin, Jia-Hau Liu, L. Turng
{"title":"Development of runner reservoir and its effect on optical properties of small high-precision plastic injection molded parts","authors":"Demitri Shotwell, Mong-Tung Lin, Jia-Hau Liu, L. Turng","doi":"10.1080/14658011.2023.2200332","DOIUrl":null,"url":null,"abstract":"ABSTRACT Adding reservoirs as extensions to a multi-cavity runner-system to regulate cavity fill-rate within small, high-precision optical parts during filling and fill-to-pack switch-over (F/P) was studied with the aid of simulations. This work aimed for a constant melt-front velocity inside the cavities with varying geometries. Three methods of reservoir designs were considered: first, using engineering intuition, second and third, using mass balance and mass and momentum balance equations, respectively. Eight reservoirs were designed and compared to two no-reservoir cases. For each case, 27 runs covering three levels of fill-rate, F/P, and packing pressure were simulated, resulting in 270 simulation runs. The quality variables of flow and thermally induced retardation and the average and standard deviation of volumetric shrinkage were considered and for each parameter, the minimum, best cases, occurred with a reservoir case. Thus, this study offers a proof-of-concept design for using reservoirs to improve molding of small, high-precision optical parts.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"15 1","pages":"330 - 345"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2023.2200332","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Adding reservoirs as extensions to a multi-cavity runner-system to regulate cavity fill-rate within small, high-precision optical parts during filling and fill-to-pack switch-over (F/P) was studied with the aid of simulations. This work aimed for a constant melt-front velocity inside the cavities with varying geometries. Three methods of reservoir designs were considered: first, using engineering intuition, second and third, using mass balance and mass and momentum balance equations, respectively. Eight reservoirs were designed and compared to two no-reservoir cases. For each case, 27 runs covering three levels of fill-rate, F/P, and packing pressure were simulated, resulting in 270 simulation runs. The quality variables of flow and thermally induced retardation and the average and standard deviation of volumetric shrinkage were considered and for each parameter, the minimum, best cases, occurred with a reservoir case. Thus, this study offers a proof-of-concept design for using reservoirs to improve molding of small, high-precision optical parts.
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.