Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.

IF 2.4
In vitro models Pub Date : 2023-01-27 eCollection Date: 2023-04-01 DOI:10.1007/s44164-023-00043-2
Tanvir Ahmed
{"title":"Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.","authors":"Tanvir Ahmed","doi":"10.1007/s44164-023-00043-2","DOIUrl":null,"url":null,"abstract":"<p><p>The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"24 1","pages":"1-23"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-023-00043-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.

用于体外肿瘤微环境仿生三维建模的功能生物材料。
有希望的抗癌药物和治疗的转化潜力可能会通过创建3D体外模型来增强,该模型可以准确地再现天然肿瘤微环境。用于癌症治疗和研究的肿瘤微环境可以使用生物材料在体外构建。三维体外癌症模型为癌症生物学提供了新的见解。癌症研究人员正在创建基于功能生物材料的人工三维肿瘤模型,模拟真实肿瘤的微环境。由于用于再生医学的支架和基于基质的三维系统的使用,我们对癌症过程中肿瘤基质活性的理解得到了改善。由于材料工程的最新发展,科学家们创造了合成肿瘤模型。这些模型使研究人员能够研究癌症的生物学并评估现有药物的治疗效果。本综述强调了生物材料工程技术的出现,这些技术有可能加速治疗结果,并讨论了利用功能生物材料创建体外仿生3D肿瘤微环境的影响。未来的癌症治疗将更多地依赖于生物材料工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信