Precise measurement of complicated frequency signals

L. Bai, Meina Xuan, Yuzhen Jin, Bo Ye, Zhenjian Cui, W. Zhou
{"title":"Precise measurement of complicated frequency signals","authors":"L. Bai, Meina Xuan, Yuzhen Jin, Bo Ye, Zhenjian Cui, W. Zhou","doi":"10.1109/FCS.2015.7138878","DOIUrl":null,"url":null,"abstract":"Based on the border effect and relevant theories, it is found that measurement precision depends on resolution stability which is much higher than resolution itself. With the help of this new theory and the more sensitive discrimination of the border of a fuzzy area, it is possible to greatly improve the measurement precision. Since there are a lot of complicated frequency signals in quantum frequency standards, telecommunication, fundamental subjects and other fields, precise measurement is significantly important. In a great deal of measurement of complicated frequency signals, discrete fuzzy areas are common. In this paper, we put forward a feasible and high-precision frequency measurement scheme to make it easier to capture border information, which shows great advantages of border effect.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":"83 1","pages":"445-447"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the border effect and relevant theories, it is found that measurement precision depends on resolution stability which is much higher than resolution itself. With the help of this new theory and the more sensitive discrimination of the border of a fuzzy area, it is possible to greatly improve the measurement precision. Since there are a lot of complicated frequency signals in quantum frequency standards, telecommunication, fundamental subjects and other fields, precise measurement is significantly important. In a great deal of measurement of complicated frequency signals, discrete fuzzy areas are common. In this paper, we put forward a feasible and high-precision frequency measurement scheme to make it easier to capture border information, which shows great advantages of border effect.
精密测量复杂频率信号
根据边界效应和相关理论,发现测量精度取决于分辨率稳定性,而分辨率稳定性远高于分辨率本身。利用这一新的理论和更灵敏的模糊区域边界判别,可以大大提高测量精度。由于量子频率标准、电信、基础学科等领域存在大量复杂的频率信号,因此精确测量显得尤为重要。在大量复杂频率信号的测量中,离散模糊区是常见的。本文提出了一种可行的高精度频率测量方案,使边界信息更容易捕获,显示了边界效应的巨大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信