{"title":"Conservation, inertia, and spacetime geometry","authors":"James Owen Weatherall","doi":"10.1016/j.shpsb.2017.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>As Harvey Brown emphasizes in his book <em>Physical Relativity</em><span><span>, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the “conservation condition”, which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the </span>differential equations governing the evolution of matter in general relativity and many other theories. I conclude by discussing what it means to posit a certain spacetime geometry and the relationship between that geometry and the dynamical properties of matter.</span></p></div>","PeriodicalId":54442,"journal":{"name":"Studies in History and Philosophy of Modern Physics","volume":"67 ","pages":"Pages 144-159"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.shpsb.2017.09.007","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in History and Philosophy of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355219817301302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 20
Abstract
As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the “conservation condition”, which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude by discussing what it means to posit a certain spacetime geometry and the relationship between that geometry and the dynamical properties of matter.
期刊介绍:
Studies in History and Philosophy of Modern Physics is devoted to all aspects of the history and philosophy of modern physics broadly understood, including physical aspects of astronomy, chemistry and other non-biological sciences. The primary focus is on physics from the mid/late-nineteenth century to the present, the period of emergence of the kind of theoretical physics that has come to dominate the exact sciences in the twentieth century. The journal is internationally oriented with contributions from a wide range of perspectives. In addition to purely historical or philosophical papers, the editors particularly encourage papers that combine these two disciplines.
The editors are also keen to publish papers of interest to physicists, as well as specialists in history and philosophy of physics.