Jia Guo , Aimin Guo , Hui Guo , Ying Wang , Jing Li , Xinlai He
{"title":"Effect of zirconium addition on the austenite grain coarsening behavior and mechanical properties of 900 MPa low carbon bainite steel","authors":"Jia Guo , Aimin Guo , Hui Guo , Ying Wang , Jing Li , Xinlai He","doi":"10.1016/S1005-8850(08)60272-8","DOIUrl":null,"url":null,"abstract":"<div><p>The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like prior-austenite grain, the microstructure consisted of lath bainite, a little of abnormal granular bainite, and acicular ferrite. The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM). The results show that, the lath is narrower with increasing cooling rate. The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate; and Zr-containing precipitates distribute uniformly, which restrains austenite grain growing in heat-affected welding zone.</p></div>","PeriodicalId":100851,"journal":{"name":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","volume":"15 6","pages":"Pages 688-695"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60272-8","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005885008602728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like prior-austenite grain, the microstructure consisted of lath bainite, a little of abnormal granular bainite, and acicular ferrite. The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM). The results show that, the lath is narrower with increasing cooling rate. The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate; and Zr-containing precipitates distribute uniformly, which restrains austenite grain growing in heat-affected welding zone.