A survey on modular vector fields and CY modular forms attached to Dwork family

Younes Nikdelan
{"title":"A survey on modular vector fields and CY modular forms attached to Dwork family","authors":"Younes Nikdelan","doi":"10.12957/cadmat.2021.63348","DOIUrl":null,"url":null,"abstract":"This article aims to give a survay of the works of the author on modular vector fields and Calabi-Yau (CY) modular forms attached to the Dwork family and avoid technical details. For any positive integer n, it is introduced a moduli space T := Tn of enhanced CY n-folds arising from the Dwork family. It is observed that there exists a unique vector field D in T, known as modular vector field, whose solution components can be expressed as q-expansions Max Planck Institute for Mthematics (MPIM), Vivatsgasse 7, 53111, Bonn, Germany; Departamento de Análise Matemática, Instituto de Matemática e Estat́ıstica (IME), Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; ORCID: https://orcid.org/0000-0002-2479-7697 E-mail: younes.nikdelan@ime.uerj.br Younes Nikdelan Modular vector fields and CY modular forms 101 (Fourier series) with integer coefficients. We call these q-expansions CY modular forms and it is verified that the space generated by them has a canonical sl2(C)-module structure which provides it with a Rankin-Cohen algebraic structure. All these concepts are explicitly established for n = 1, 2, 3, 4.","PeriodicalId":30267,"journal":{"name":"Cadernos do IME Serie Estatistica","volume":"503 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do IME Serie Estatistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12957/cadmat.2021.63348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to give a survay of the works of the author on modular vector fields and Calabi-Yau (CY) modular forms attached to the Dwork family and avoid technical details. For any positive integer n, it is introduced a moduli space T := Tn of enhanced CY n-folds arising from the Dwork family. It is observed that there exists a unique vector field D in T, known as modular vector field, whose solution components can be expressed as q-expansions Max Planck Institute for Mthematics (MPIM), Vivatsgasse 7, 53111, Bonn, Germany; Departamento de Análise Matemática, Instituto de Matemática e Estat́ıstica (IME), Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; ORCID: https://orcid.org/0000-0002-2479-7697 E-mail: younes.nikdelan@ime.uerj.br Younes Nikdelan Modular vector fields and CY modular forms 101 (Fourier series) with integer coefficients. We call these q-expansions CY modular forms and it is verified that the space generated by them has a canonical sl2(C)-module structure which provides it with a Rankin-Cohen algebraic structure. All these concepts are explicitly established for n = 1, 2, 3, 4.
Dwork族中模向量场和CY模形式的研究
本文旨在概述作者在模向量场和Dwork家族中的Calabi-Yau (CY)模形式方面的工作,避免技术细节。对于任意正整数n,引入了由Dwork族产生的增强CY n-褶的模空间T:= Tn。观察到在T中存在一个唯一的向量场D,称为模向量场,其解分量可以表示为q展开式,Vivatsgasse 7,53111,波恩,德国;巴西里约热内卢州立大学(UERJ) Análise Matemática系Matemática州研究所ıstica (IME),巴西里约热内卢州立大学(UERJ),弗朗西斯科·泽维尔大学,524;ORCID: https://orcid.org/0000-0002-2479-7697 E-mail: younes.nikdelan@ime.uerj.br Younes Nikdelan模向量场和CY模形式101(傅立叶级数)与整数系数。我们称这些q-展开式为CY模形式,并证明了由它们生成的空间具有正则的sl2(C)-模结构,从而使其具有Rankin-Cohen代数结构。所有这些概念在n = 1,2,3,4时都是明确成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
3
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信