Hydrometallurgical refining of metallurgical silicon

N. Nemchinova, A. Tyutrin, A. Zaitseva
{"title":"Hydrometallurgical refining of metallurgical silicon","authors":"N. Nemchinova, A. Tyutrin, A. Zaitseva","doi":"10.17073/0368-0797-2023-2-215-221","DOIUrl":null,"url":null,"abstract":"The paper presents the results of refining silicon of metallurgical grades based on leaching of impurities with inorganic acids. Silicon samples were studied by metallographic and X-ray fluorescent methods of analysis, as well as X-ray spectral microanalysis. To improve the quality of this alloying element, we carried out experimental work on its hydrometallurgical purification with solutions of various acids (10 % H2SO4 , HCl, HNO3 , 4 % HF) and their mixtures. Values of changes in the Gibbs energy were calculated for reactions of interaction with reagents of the main impurity inclusions recorded in the studied silicon samples (FeSi2 , Fe2Si, FeSi, AlFeSi, AlFeSi2 , Al3FeSi2 , FeSi2Ti, FeAlTiSi, TiSi2 , Ca2Si). The experiments were carried out on silicon samples with a particle size of –200 μm with constant stirring by a magnetic stirrer at a temperature of 60 °С, duration 1 h and L:S = 5:1. Determination of concentration of the impurity elements in the solution after leaching was made by the atomic emission method of analysis. When hydrofluoric acid is used as a solvent, the best results are obtained for purification of iron, aluminum, and titanium (concentration in solution, mg/dm3, respectively: 2380, 831, 145). The maximum concentration of calcium in the solution (147 mg/dm3 ) was achieved by hydrochloric acid treatment of fine silicon. The most effective for transferring impurities into solution is a mixture of sulfuric and hydrofluoric acids at a ratio of 1:1. Using a mixture of H2SO4 and HCl as a solvent (at a ratio of 1:3) made it possible to achieve sufficiently high mass concentrations of impurity elements in the leaching solution. The degree of silicon purification from iron was 33.32 %, aluminum – 54.64 %, calcium – 65.77 %, titanium – 15.64 %.","PeriodicalId":14630,"journal":{"name":"Izvestiya. Ferrous Metallurgy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya. Ferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2023-2-215-221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the results of refining silicon of metallurgical grades based on leaching of impurities with inorganic acids. Silicon samples were studied by metallographic and X-ray fluorescent methods of analysis, as well as X-ray spectral microanalysis. To improve the quality of this alloying element, we carried out experimental work on its hydrometallurgical purification with solutions of various acids (10 % H2SO4 , HCl, HNO3 , 4 % HF) and their mixtures. Values of changes in the Gibbs energy were calculated for reactions of interaction with reagents of the main impurity inclusions recorded in the studied silicon samples (FeSi2 , Fe2Si, FeSi, AlFeSi, AlFeSi2 , Al3FeSi2 , FeSi2Ti, FeAlTiSi, TiSi2 , Ca2Si). The experiments were carried out on silicon samples with a particle size of –200 μm with constant stirring by a magnetic stirrer at a temperature of 60 °С, duration 1 h and L:S = 5:1. Determination of concentration of the impurity elements in the solution after leaching was made by the atomic emission method of analysis. When hydrofluoric acid is used as a solvent, the best results are obtained for purification of iron, aluminum, and titanium (concentration in solution, mg/dm3, respectively: 2380, 831, 145). The maximum concentration of calcium in the solution (147 mg/dm3 ) was achieved by hydrochloric acid treatment of fine silicon. The most effective for transferring impurities into solution is a mixture of sulfuric and hydrofluoric acids at a ratio of 1:1. Using a mixture of H2SO4 and HCl as a solvent (at a ratio of 1:3) made it possible to achieve sufficiently high mass concentrations of impurity elements in the leaching solution. The degree of silicon purification from iron was 33.32 %, aluminum – 54.64 %, calcium – 65.77 %, titanium – 15.64 %.
湿法冶炼冶金用硅
本文介绍了用无机酸浸出杂质精制冶金级硅的结果。采用金相分析、x射线荧光分析和x射线光谱显微分析方法对硅样品进行了研究。为提高该合金元素的质量,采用不同酸(10 % H2SO4、HCl、HNO3、4 % HF)及其混合物对其进行了湿法冶金净化实验。计算了所研究的硅样品(FeSi2、Fe2Si、FeSi、AlFeSi、AlFeSi2、Al3FeSi2、FeSi2Ti、FeAlTiSi、TiSi2、Ca2Si)中主要杂质夹杂物与试剂相互作用反应的吉布斯能变化值。实验以粒径为-200 μm的硅样品为对象,在温度为60 °С,持续时间为1 h, L:S = 5:1的条件下,用磁力搅拌器不断搅拌。采用原子发射法测定浸出后溶液中杂质元素的浓度。以氢氟酸为溶剂提纯铁、铝和钛的效果最好(溶液浓度,分别为:2380、831、145 mg/dm3)。细硅经盐酸处理后,溶液中钙的最大浓度为147 mg/dm3。将杂质转移到溶液中最有效的方法是将硫酸和氢氟酸按1:1的比例混合。使用H2SO4和HCl的混合物作为溶剂(比例为1:3)可以在浸出液中获得足够高的杂质元素质量浓度。从铁、铝、钙、钛中提纯硅的比例分别为33.32%、54.64%、65.77%和15.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信