The Weighted Upwinding Finite Volume Method for the Convection Diffusion Problem on a Nonstandard Covolume Grid

Dong Liang, Weidong Zhao
{"title":"The Weighted Upwinding Finite Volume Method for the Convection Diffusion Problem on a Nonstandard Covolume Grid","authors":"Dong Liang, Weidong Zhao","doi":"10.1002/anac.200310015","DOIUrl":null,"url":null,"abstract":"In this paper we propose a weighted upwinding finite volume method on a nonstandard covolume grid for the variable coefficient convection-diffusion problems. We give a simple method of choosing the optimal weighted factors depending on the local Peclet's numbers of the original problem. With the optimal factors the method overcomes numerical oscillation and avoids the numerical dispersion and has high-order computing accuracy. The conservation law and the maximum principle are proved. The second-order error estimates in L2 and discrete H1 norms are obtained for the optimal weighted upwinding finite volume method. Numerical experiments are given to illustrate the performance of the method. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"180-194"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310015","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a weighted upwinding finite volume method on a nonstandard covolume grid for the variable coefficient convection-diffusion problems. We give a simple method of choosing the optimal weighted factors depending on the local Peclet's numbers of the original problem. With the optimal factors the method overcomes numerical oscillation and avoids the numerical dispersion and has high-order computing accuracy. The conservation law and the maximum principle are proved. The second-order error estimates in L2 and discrete H1 norms are obtained for the optimal weighted upwinding finite volume method. Numerical experiments are given to illustrate the performance of the method. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
非标准协体网格上对流扩散问题的加权上卷有限体积法
本文针对变系数对流扩散问题,在非标准协体积网格上提出了一种加权上绕有限体积法。给出了一种根据原问题的局部佩莱特数选择最优加权因子的简单方法。该方法利用最优因子克服了数值振荡,避免了数值色散,具有较高的阶数计算精度。证明了守恒定律和极大值原理。得到了最优加权上绕有限体积法在L2范数和离散H1范数下的二阶误差估计。数值实验验证了该方法的有效性。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信