Yassine Talbi, Damien Brulin, E. Campo, J. Fourniols
{"title":"Controlled permeation of lidocaine hydrochloride using a smart drug delivery system","authors":"Yassine Talbi, Damien Brulin, E. Campo, J. Fourniols","doi":"10.2316/P.2017.852-024","DOIUrl":null,"url":null,"abstract":"Transdermal administration might be an interesting alternative to current routes of administration. It is non-invasive, avoids gastric side effects, and improves bioavailability of the molecules. However, due to the low permeability of the stratum corneum, a permeation enhancement strategy is required to make a large number of molecules suitable to this mode of administration. To overcome those limitations and deliver controlled drugs, a smart transdermal drug delivery system is designing. This paper focusses on the study of transdermal iontophoresis permeation of lidocaine hydrochloride (2%, w/w) across pig ear skin. In vitro iontophoresis experiments were conducted using Franz diffusion cells. Anodal iontophoresis was applied for 30 minutes at different current densities. Samples (1 mL) were withdrawn every 30 minutes from the receptor compartment and replaced with a fresh buffer and then analyzed using High Performance Liquid Chromatography (HPLC). Results highlight the relationship between current density, time of stimulation, and amount of lidocaine permeated.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"76 1","pages":"134-140"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Transdermal administration might be an interesting alternative to current routes of administration. It is non-invasive, avoids gastric side effects, and improves bioavailability of the molecules. However, due to the low permeability of the stratum corneum, a permeation enhancement strategy is required to make a large number of molecules suitable to this mode of administration. To overcome those limitations and deliver controlled drugs, a smart transdermal drug delivery system is designing. This paper focusses on the study of transdermal iontophoresis permeation of lidocaine hydrochloride (2%, w/w) across pig ear skin. In vitro iontophoresis experiments were conducted using Franz diffusion cells. Anodal iontophoresis was applied for 30 minutes at different current densities. Samples (1 mL) were withdrawn every 30 minutes from the receptor compartment and replaced with a fresh buffer and then analyzed using High Performance Liquid Chromatography (HPLC). Results highlight the relationship between current density, time of stimulation, and amount of lidocaine permeated.