Robust multi‐echelon inventory management with multiple suppliers

Liangquan Wang, Chaolin Yang
{"title":"Robust multi‐echelon inventory management with multiple suppliers","authors":"Liangquan Wang, Chaolin Yang","doi":"10.1002/nav.22147","DOIUrl":null,"url":null,"abstract":"We study a periodic‐review multi‐supplier series inventory system in which the demand is restricted to partial sum uncertainty sets. We present and solve a robust rolling‐horizon model for the system. We propose an induction framework to characterize the closed‐form robust optimal solution of the problem. We show that the robust optimal policy combines the echelon base‐stock policy and a gap‐of‐echelon‐base‐stock policy for the uppermost stage and a modified echelon base‐stock policy for the other downstream stages. The policy structure is easy for the manager to understand and implement in practice. The policy parameters are directly determined by a sequence of nominal partial‐sum demands, and its computation is very effective. In addition, the policy does not rely on complete information about the demand distribution; its solution can be more robust than that of stochastic optimization methods, especially when demand is highly uncertain, and forecasting is difficult. Based on the structure of the robust optimal policy, we design two heuristic policies for the system and evaluate the policies' performance through an extensive numerical study using both synthetic and real data.","PeriodicalId":19120,"journal":{"name":"Naval Research Logistics (NRL)","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics (NRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nav.22147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a periodic‐review multi‐supplier series inventory system in which the demand is restricted to partial sum uncertainty sets. We present and solve a robust rolling‐horizon model for the system. We propose an induction framework to characterize the closed‐form robust optimal solution of the problem. We show that the robust optimal policy combines the echelon base‐stock policy and a gap‐of‐echelon‐base‐stock policy for the uppermost stage and a modified echelon base‐stock policy for the other downstream stages. The policy structure is easy for the manager to understand and implement in practice. The policy parameters are directly determined by a sequence of nominal partial‐sum demands, and its computation is very effective. In addition, the policy does not rely on complete information about the demand distribution; its solution can be more robust than that of stochastic optimization methods, especially when demand is highly uncertain, and forecasting is difficult. Based on the structure of the robust optimal policy, we design two heuristic policies for the system and evaluate the policies' performance through an extensive numerical study using both synthetic and real data.
强大的多级库存管理与多个供应商
本文研究了一个需求被限制为部分和不确定性集的周期性评审多供应商系列库存系统。提出并求解了该系统的鲁棒滚动地平线模型。我们提出了一个归纳框架来表征该问题的闭型鲁棒最优解。我们证明了稳健的最优策略结合了最上层阶段的梯队基础-库存策略和梯队基础-库存的差距策略,以及其他下游阶段的修改梯队基础-库存策略。该策略结构易于管理者理解并在实践中实施。政策参数直接由一系列名义部分和需求决定,其计算非常有效。此外,该政策并不依赖于需求分布的完整信息;它的解比随机优化方法的解更鲁棒,特别是在需求高度不确定和预测困难的情况下。在鲁棒最优策略结构的基础上,设计了两个启发式策略,并通过综合数据和实际数据对策略的性能进行了广泛的数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信