Clinical Significance of Aspirin on Blood Flow through Stenotic Blood Vessels

S. R. Shah
{"title":"Clinical Significance of Aspirin on Blood Flow through Stenotic Blood Vessels","authors":"S. R. Shah","doi":"10.4028/www.scientific.net/JBBTE.10.17","DOIUrl":null,"url":null,"abstract":"In this present study a two-phase model for the influence of aspirin on peripheral layer viscosity for physiological characteristics of blood flow through stenosed blood vessels using Casson’s fluid model has been obtained. Flow of blood with axially non-symmetric but radially symmetric stenosis geometry is considered. The non-linear pressure equations have been solved with help of boundary conditions and the results are displayed graphically for different flow characteristics. It was found that the resistance to flow decreases as stenosis shape parameter increases whereas the resistance to flow increases with increasing values of stenosis length, stenosis size and peripheral layer viscosity. The effects of stenosis severity and wall shear stress are discussed in the present computational analysis. Comparisons between the measured and computed peripheral layer viscosity profiles are favourable to the solutions. As a result it can be concluded that a regular dose of Asprin decreases the blood viscosity by diluting the blood of diabetic patients which ultimately decreases the blood pressure. For the validation of the numerical model, the computation results are compared with the experimental data and results from published literature.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"25 1","pages":"17 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.10.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this present study a two-phase model for the influence of aspirin on peripheral layer viscosity for physiological characteristics of blood flow through stenosed blood vessels using Casson’s fluid model has been obtained. Flow of blood with axially non-symmetric but radially symmetric stenosis geometry is considered. The non-linear pressure equations have been solved with help of boundary conditions and the results are displayed graphically for different flow characteristics. It was found that the resistance to flow decreases as stenosis shape parameter increases whereas the resistance to flow increases with increasing values of stenosis length, stenosis size and peripheral layer viscosity. The effects of stenosis severity and wall shear stress are discussed in the present computational analysis. Comparisons between the measured and computed peripheral layer viscosity profiles are favourable to the solutions. As a result it can be concluded that a regular dose of Asprin decreases the blood viscosity by diluting the blood of diabetic patients which ultimately decreases the blood pressure. For the validation of the numerical model, the computation results are compared with the experimental data and results from published literature.
阿司匹林对狭窄血管血流的临床意义
本研究采用Casson流体模型,建立了阿司匹林对血管狭窄血流生理特性外周层粘度影响的两相模型。考虑了轴向非对称但径向对称狭窄几何的血流。利用边界条件对非线性压力方程进行了求解,并对不同流动特性的结果进行了图形化展示。流动阻力随狭窄形状参数的增大而减小,而流动阻力随狭窄长度、狭窄尺寸和周围层粘度的增大而增大。在计算分析中讨论了狭窄程度和壁面剪应力的影响。实测和计算的外围层粘度分布的比较有利于解决方案。因此,可以得出结论,常规剂量的阿司匹林通过稀释糖尿病患者的血液来降低血液粘度,从而最终降低血压。为了验证数值模型的正确性,将计算结果与实验数据和文献结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信