A robust solution strategy for the Cahn-Larché equations

E. Storvik, J. Both, J. Nordbotten, F. Radu
{"title":"A robust solution strategy for the Cahn-Larché equations","authors":"E. Storvik, J. Both, J. Nordbotten, F. Radu","doi":"10.48550/arXiv.2206.01541","DOIUrl":null,"url":null,"abstract":"In this paper we propose a solution strategy for the Cahn-Larch\\'e equations, which is a model for linearized elasticity in a medium with two elastic phases that evolve subject to a Ginzburg-Landau type energy functional. The system can be seen as a combination of the Cahn-Hilliard regularized interface equation and linearized elasticity, and is non-linearly coupled, has a fourth order term that comes from the Cahn-Hilliard subsystem, and is non-convex and nonlinear in both the phase-field and displacement variables. We propose a novel semi-implicit discretization in time that uses a standard convex-concave splitting method of the nonlinear double-well potential, as well as special treatment to the elastic energy. We show that the resulting discrete system is equivalent to a convex minimization problem, and propose and prove the convergence of alternating minimization applied to it. Finally, we present numerical experiments that show the robustness and effectiveness of both alternating minimization and the monolithic Newton method applied to the newly proposed discrete system of equations. We compare it to a system of equations that has been discretized with a standard convex-concave splitting of the double-well potential, and implicit evaluations of the elasticity contributions and show that the newly proposed discrete system is better conditioned for linearization techniques.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":"1 1","pages":"112-126"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.01541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a solution strategy for the Cahn-Larch\'e equations, which is a model for linearized elasticity in a medium with two elastic phases that evolve subject to a Ginzburg-Landau type energy functional. The system can be seen as a combination of the Cahn-Hilliard regularized interface equation and linearized elasticity, and is non-linearly coupled, has a fourth order term that comes from the Cahn-Hilliard subsystem, and is non-convex and nonlinear in both the phase-field and displacement variables. We propose a novel semi-implicit discretization in time that uses a standard convex-concave splitting method of the nonlinear double-well potential, as well as special treatment to the elastic energy. We show that the resulting discrete system is equivalent to a convex minimization problem, and propose and prove the convergence of alternating minimization applied to it. Finally, we present numerical experiments that show the robustness and effectiveness of both alternating minimization and the monolithic Newton method applied to the newly proposed discrete system of equations. We compare it to a system of equations that has been discretized with a standard convex-concave splitting of the double-well potential, and implicit evaluations of the elasticity contributions and show that the newly proposed discrete system is better conditioned for linearization techniques.
cahn - larch方程的鲁棒解策略
本文提出了Cahn-Larch\'e方程的求解策略,该方程是具有两个弹性阶段的介质的线性化弹性模型,该模型受金兹堡-朗道型能量泛函的影响。该系统可以看作是Cahn-Hilliard正则化界面方程和线性化弹性的组合,并且是非线性耦合的,具有来自Cahn-Hilliard子系统的四阶项,并且在相场和位移变量中都是非凸和非线性的。本文提出了一种新的半隐式时间离散方法,该方法采用非线性双阱势的标准凹凸分裂方法,并对弹性能进行了特殊处理。我们证明了所得到的离散系统等价于一个凸最小化问题,并提出并证明了应用于该问题的交替最小化的收敛性。最后,我们给出了数值实验,证明交替最小化和整体牛顿方法应用于新提出的离散方程组的鲁棒性和有效性。我们将其与用双井势的标准凹凸分裂和弹性贡献的隐式评估进行离散化的方程组进行比较,并表明新提出的离散系统更适合线性化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信