Private image computation: The case of cloud based privacy-preserving SIFT

Zhan Qin, Jingbo Yan, K. Ren
{"title":"Private image computation: The case of cloud based privacy-preserving SIFT","authors":"Zhan Qin, Jingbo Yan, K. Ren","doi":"10.1109/INFCOMW.2014.6849214","DOIUrl":null,"url":null,"abstract":"In this paper, we present SecSIFT, a high-performance cloud based image feature detection system for performing Scalar Invariant Feature Transform (SIFT) over private image data without compromising the privacy. In contrast to previous works, we outsource the computation of image feature detection to a set of independent, co-operative cloud servers, and keep the outsourced computation procedures as simple as possible. Using this framework, we are not restricted by efficiency limitations of homomorphic encryption scheme and thus are able to implement applications such as social discovery or behavior prediction with less complexity on computation and communication.","PeriodicalId":6468,"journal":{"name":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"179-180"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2014.6849214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present SecSIFT, a high-performance cloud based image feature detection system for performing Scalar Invariant Feature Transform (SIFT) over private image data without compromising the privacy. In contrast to previous works, we outsource the computation of image feature detection to a set of independent, co-operative cloud servers, and keep the outsourced computation procedures as simple as possible. Using this framework, we are not restricted by efficiency limitations of homomorphic encryption scheme and thus are able to implement applications such as social discovery or behavior prediction with less complexity on computation and communication.
私有图像计算:基于云的隐私保护SIFT案例
在本文中,我们提出了SecSIFT,一种高性能的基于云的图像特征检测系统,用于在不损害隐私的情况下对私有图像数据进行标量不变特征变换(SIFT)。与以往的工作相比,我们将图像特征检测的计算外包给一组独立的、协作的云服务器,并使外包的计算过程尽可能简单。使用该框架,我们不受同态加密方案的效率限制,从而能够以较低的计算和通信复杂度实现社会发现或行为预测等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信