On the Ideal Transforms Defined by an Ideal

Y. Sadegh, J. A’zami, S. Yazdani
{"title":"On the Ideal Transforms Defined by an Ideal","authors":"Y. Sadegh, J. A’zami, S. Yazdani","doi":"10.54503/0002-3043-2022.57.6-62-69","DOIUrl":null,"url":null,"abstract":"Abstract Let $$R$$ be a commutative Noetherian ring, $$I$$ an ideal of $$R$$ , and $$M$$ an $$R$$ -module. The ambiguous structure of $$I$$ -transform functor $$D_{I}(-)$$ makes the study of its properties attractive. In this paper we gather conditions under which $$D_{I}(R)$$ and $$D_{I}(M)$$ appear in certain roles. It is shown under these conditions that $$D_{I}(R)$$ is a Cohen–Macaulay ring, regular ring, $$\\cdots$$ and $$D_{I}(M)$$ can be regarded as a Noetherian, flat, $$\\cdots R$$ -module. We also present a primary decomposition of zero submodule of $$D_{I}(M)$$ and secondary representation of $$D_{I}(M)$$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.54503/0002-3043-2022.57.6-62-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $$R$$ be a commutative Noetherian ring, $$I$$ an ideal of $$R$$ , and $$M$$ an $$R$$ -module. The ambiguous structure of $$I$$ -transform functor $$D_{I}(-)$$ makes the study of its properties attractive. In this paper we gather conditions under which $$D_{I}(R)$$ and $$D_{I}(M)$$ appear in certain roles. It is shown under these conditions that $$D_{I}(R)$$ is a Cohen–Macaulay ring, regular ring, $$\cdots$$ and $$D_{I}(M)$$ can be regarded as a Noetherian, flat, $$\cdots R$$ -module. We also present a primary decomposition of zero submodule of $$D_{I}(M)$$ and secondary representation of $$D_{I}(M)$$ .
分享
查看原文
论由理想定义的理想变换
设$$R$$是一个交换诺瑟环,$$I$$是一个理想的$$R$$, $$M$$是一个$$R$$ -模块。$$I$$ -变换函子$$D_{I}(-)$$的二义性结构使得对其性质的研究具有吸引力。本文收集了$$D_{I}(R)$$和$$D_{I}(M)$$发挥一定作用的条件。在这些条件下证明$$D_{I}(R)$$是Cohen-Macaulay环,正则环,$$\cdots$$和$$D_{I}(M)$$可以看作是Noetherian, flat, $$\cdots R$$ -模。给出了$$D_{I}(M)$$零子模的一次分解和$$D_{I}(M)$$的二次表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信