Multimodal Human Activity Recognition for Industrial Manufacturing Processes in Robotic Workcells

Alina Roitberg, N. Somani, A. Perzylo, Markus Rickert, A. Knoll
{"title":"Multimodal Human Activity Recognition for Industrial Manufacturing Processes in Robotic Workcells","authors":"Alina Roitberg, N. Somani, A. Perzylo, Markus Rickert, A. Knoll","doi":"10.1145/2818346.2820738","DOIUrl":null,"url":null,"abstract":"We present an approach for monitoring and interpreting human activities based on a novel multimodal vision-based interface, aiming at improving the efficiency of human-robot interaction (HRI) in industrial environments. Multi-modality is an important concept in this design, where we combine inputs from several state-of-the-art sensors to provide a variety of information, e.g. skeleton and fingertip poses. Based on typical industrial workflows, we derived multiple levels of human activity labels, including large-scale activities (e.g. assembly) and simpler sub-activities (e.g. hand gestures), creating a duration- and complexity-based hierarchy. We train supervised generative classifiers for each activity level and combine the output of this stage with a trained Hierarchical Hidden Markov Model (HHMM), which models not only the temporal aspects between the activities on the same level, but also the hierarchical relationships between the levels.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

We present an approach for monitoring and interpreting human activities based on a novel multimodal vision-based interface, aiming at improving the efficiency of human-robot interaction (HRI) in industrial environments. Multi-modality is an important concept in this design, where we combine inputs from several state-of-the-art sensors to provide a variety of information, e.g. skeleton and fingertip poses. Based on typical industrial workflows, we derived multiple levels of human activity labels, including large-scale activities (e.g. assembly) and simpler sub-activities (e.g. hand gestures), creating a duration- and complexity-based hierarchy. We train supervised generative classifiers for each activity level and combine the output of this stage with a trained Hierarchical Hidden Markov Model (HHMM), which models not only the temporal aspects between the activities on the same level, but also the hierarchical relationships between the levels.
机器人工场工业制造过程的多模态人类活动识别
我们提出了一种基于新型多模态视觉界面的人类活动监测和解释方法,旨在提高工业环境中人机交互(HRI)的效率。在这个设计中,多模态是一个重要的概念,我们将几个最先进的传感器的输入结合起来,提供各种信息,例如骨骼和指尖姿势。基于典型的工业工作流,我们衍生了多个层次的人类活动标签,包括大规模活动(例如组装)和更简单的子活动(例如手势),创建了一个基于持续时间和复杂性的层次结构。我们为每个活动级别训练监督生成分类器,并将该阶段的输出与训练的层次隐马尔可夫模型(HHMM)结合起来,该模型不仅对同一级别上活动之间的时间方面进行建模,而且还对级别之间的层次关系进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信