S. Corbò, Tommaso Wolfler, Nicola Banchi, Ippolito Furgiuele, M. Farooq
{"title":"The Role of Turbomachinery in Enabling the Hydrogen Economy","authors":"S. Corbò, Tommaso Wolfler, Nicola Banchi, Ippolito Furgiuele, M. Farooq","doi":"10.2118/207312-ms","DOIUrl":null,"url":null,"abstract":"\n The purpose of this paper is to present the various technological solutions optimized for the use of hydrogen, in transport, distribution, storage and utilization, analyzing their criticalities and advantages. Hydrogen compression is a fundamental step in the transportation and storage segments and continuous improvement are required. The greatest technological challenges are certainly the high pressures required for the various fields of use, the need to maintain a clean gas and to use materials that are not subject to embrittlement. The choice between the different compression technologies is based on the need for pressures and flow rates; in the case of high flow rates and low compression ratios a centrifugal compressor is preferable, while for low flow rates and high compression ratios the choice goes to piston compressors.\n To prevent gas contamination, dry reciprocating compressor are preferred because they allow to avoid an oil separator filter on the discharge. Current technology of reciprocating compressors allows to compress hydrogen up to 300 bar with lubricated machines, while with dry technology it is possible to reach up to 250 bar. A second criticality on reciprocating compressors is maintenance: the parts subject to wear need to be serviced every 8000 hour of operation. The use of innovative materials will increase the maintenance intervals reaching higher pressures without lubrication.\n To increase the pressure ratio with centrifugal compressor, it's needed to increase the rotating speed, therefore the peripheral speed, with materials suitable for H2, stages get high compression to reduce the number of compressor bodies.\n If the process conditions require high delivery pressures combined with large flow rates, a solution of centrifugal compressors alone would be able to manage the flow rate but not the required delivery pressure. On the other hand, the use of reciprocating compressors would require a considerable number of units. In this case, therefore, the optimal solution is to combine the two technologies, centrifugal and pistons, using the best features.\n A case study in which the superior performances of the hybrid solution in terms of total cost of ownership will be described and compared with traditional single technology compression train","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207312-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to present the various technological solutions optimized for the use of hydrogen, in transport, distribution, storage and utilization, analyzing their criticalities and advantages. Hydrogen compression is a fundamental step in the transportation and storage segments and continuous improvement are required. The greatest technological challenges are certainly the high pressures required for the various fields of use, the need to maintain a clean gas and to use materials that are not subject to embrittlement. The choice between the different compression technologies is based on the need for pressures and flow rates; in the case of high flow rates and low compression ratios a centrifugal compressor is preferable, while for low flow rates and high compression ratios the choice goes to piston compressors.
To prevent gas contamination, dry reciprocating compressor are preferred because they allow to avoid an oil separator filter on the discharge. Current technology of reciprocating compressors allows to compress hydrogen up to 300 bar with lubricated machines, while with dry technology it is possible to reach up to 250 bar. A second criticality on reciprocating compressors is maintenance: the parts subject to wear need to be serviced every 8000 hour of operation. The use of innovative materials will increase the maintenance intervals reaching higher pressures without lubrication.
To increase the pressure ratio with centrifugal compressor, it's needed to increase the rotating speed, therefore the peripheral speed, with materials suitable for H2, stages get high compression to reduce the number of compressor bodies.
If the process conditions require high delivery pressures combined with large flow rates, a solution of centrifugal compressors alone would be able to manage the flow rate but not the required delivery pressure. On the other hand, the use of reciprocating compressors would require a considerable number of units. In this case, therefore, the optimal solution is to combine the two technologies, centrifugal and pistons, using the best features.
A case study in which the superior performances of the hybrid solution in terms of total cost of ownership will be described and compared with traditional single technology compression train