{"title":"Renorming AM-spaces","authors":"T. Oikhberg, M. Tursi","doi":"10.1090/proc/15714","DOIUrl":null,"url":null,"abstract":"We prove that any separable AM-space $X$ has an equivalent lattice norm for which no non-trivial surjective lattice isometries exist. Moreover, if $X$ has no more than one atom, then this new norm may be an AM-norm. As our main tool, we introduce and investigate the class of so called Benyamini spaces, which ``approximate'' general AM-spaces.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that any separable AM-space $X$ has an equivalent lattice norm for which no non-trivial surjective lattice isometries exist. Moreover, if $X$ has no more than one atom, then this new norm may be an AM-norm. As our main tool, we introduce and investigate the class of so called Benyamini spaces, which ``approximate'' general AM-spaces.