{"title":"The model theory of Cohen rings","authors":"Sylvy Anscombe, Franziska Jahnke","doi":"10.5802/cml.84","DOIUrl":null,"url":null,"abstract":"The aim of this article is to give a self-contained account of the algebra and model theory of Cohen rings, a natural generalization of Witt rings. Witt rings are only valuation rings in case the residue field is perfect, and Cohen rings arise as the Witt ring analogon over imperfect residue fields. Just as one studies truncated Witt rings to understand Witt rings, we study Cohen rings of positive characteristic as well as of characteristic zero.Our main results are a relative completeness and a relative model completeness result for Cohen rings, which imply the corresponding Ax–Kochen/Ershov type results for unramified henselian valued fields also in case the residue field is imperfect. The key to these results is a proof of relative quantifier elimination down to the residue field in an appropriate language which holds in any unramified henselian valued field","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10
Abstract
The aim of this article is to give a self-contained account of the algebra and model theory of Cohen rings, a natural generalization of Witt rings. Witt rings are only valuation rings in case the residue field is perfect, and Cohen rings arise as the Witt ring analogon over imperfect residue fields. Just as one studies truncated Witt rings to understand Witt rings, we study Cohen rings of positive characteristic as well as of characteristic zero.Our main results are a relative completeness and a relative model completeness result for Cohen rings, which imply the corresponding Ax–Kochen/Ershov type results for unramified henselian valued fields also in case the residue field is imperfect. The key to these results is a proof of relative quantifier elimination down to the residue field in an appropriate language which holds in any unramified henselian valued field
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.