Collocation based Approximations for a class of fractional boundary Value Problems

IF 1.6 3区 数学 Q1 MATHEMATICS
Hanna Britt Soots, Kaido Lätt, A. Pedas
{"title":"Collocation based Approximations for a class of fractional boundary Value Problems","authors":"Hanna Britt Soots, Kaido Lätt, A. Pedas","doi":"10.3846/mma.2023.16359","DOIUrl":null,"url":null,"abstract":"A boundary value problem for fractional integro-differential equations with weakly singular kernels is considered. The problem is reformulated as an integral equation of the second kind with respect to, the Caputo fractional derivative of y of order α, with 1 < α < 2, where y is the solution of the original problem. Using this reformulation, the regularity properties of both y and its Caputo derivative z are studied. Based on this information a piecewise polynomial collocation method is developed for finding an approximate solution zN of the reformulated problem. Using zN, an approximation yN for y is constructed and a detailed convergence analysis of the proposed method is given. In particular, the attainable order of convergence of the proposed method for appropriate values of grid and collocation parameters is established. To illustrate the performance of our approach, results of some numerical experiments are presented.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"77 1","pages":"218-236"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.16359","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A boundary value problem for fractional integro-differential equations with weakly singular kernels is considered. The problem is reformulated as an integral equation of the second kind with respect to, the Caputo fractional derivative of y of order α, with 1 < α < 2, where y is the solution of the original problem. Using this reformulation, the regularity properties of both y and its Caputo derivative z are studied. Based on this information a piecewise polynomial collocation method is developed for finding an approximate solution zN of the reformulated problem. Using zN, an approximation yN for y is constructed and a detailed convergence analysis of the proposed method is given. In particular, the attainable order of convergence of the proposed method for appropriate values of grid and collocation parameters is established. To illustrate the performance of our approach, results of some numerical experiments are presented.
一类分数边值问题的基于配置的近似
研究一类弱奇异核分数阶积分微分方程的边值问题。将问题重新表述为第二类积分方程,即y的α阶Caputo分数阶导数,1 < α < 2,其中y为原问题的解。利用这一重新表述,研究了y及其Caputo导数z的正则性。在此基础上,提出了一种分段多项式配置法来求解重表述问题的近似解zN。利用zN构造了y的近似yN,并对该方法进行了详细的收敛性分析。特别地,建立了该方法在适当的网格参数和配置参数值下可达到的收敛阶数。为了说明我们的方法的性能,给出了一些数值实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信