Deterministic distributed edge-coloring with fewer colors

M. Ghaffari, F. Kuhn, Yannic Maus, Jara Uitto
{"title":"Deterministic distributed edge-coloring with fewer colors","authors":"M. Ghaffari, F. Kuhn, Yannic Maus, Jara Uitto","doi":"10.1145/3188745.3188906","DOIUrl":null,"url":null,"abstract":"We present a deterministic distributed algorithm, in the LOCAL model, that computes a (1+o(1))Δ-edge-coloring in polylogarithmic-time, so long as the maximum degree Δ=Ω(logn). For smaller Δ, we give a polylogarithmic-time 3Δ/2-edge-coloring. These are the first deterministic algorithms to go below the natural barrier of 2Δ−1 colors, and they improve significantly on the recent polylogarithmic-time (2Δ−1)(1+o(1))-edge-coloring of Ghaffari and Su [SODA’17] and the (2Δ−1)-edge-coloring of Fischer, Ghaffari, and Kuhn [FOCS’17], positively answering the main open question of the latter. The key technical ingredient of our algorithm is a simple and novel gradual packing of judiciously chosen near-maximum matchings, each of which becomes one of the color classes.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

We present a deterministic distributed algorithm, in the LOCAL model, that computes a (1+o(1))Δ-edge-coloring in polylogarithmic-time, so long as the maximum degree Δ=Ω(logn). For smaller Δ, we give a polylogarithmic-time 3Δ/2-edge-coloring. These are the first deterministic algorithms to go below the natural barrier of 2Δ−1 colors, and they improve significantly on the recent polylogarithmic-time (2Δ−1)(1+o(1))-edge-coloring of Ghaffari and Su [SODA’17] and the (2Δ−1)-edge-coloring of Fischer, Ghaffari, and Kuhn [FOCS’17], positively answering the main open question of the latter. The key technical ingredient of our algorithm is a simple and novel gradual packing of judiciously chosen near-maximum matchings, each of which becomes one of the color classes.
具有较少颜色的确定性分布边缘着色
我们提出了一种确定性分布式算法,在LOCAL模型中,只要最大度Δ=Ω(logn),就可以在多对数时间内计算a (1+o(1))Δ-edge-coloring。对于较小的Δ,我们给出一个多对数时间3Δ/2边着色。这些是第一个低于2Δ−1颜色自然屏障的确定性算法,它们显著改进了最近的多对数时间(2Δ−1)(1+o(1))-边着色的Ghaffari和Su [SODA ' 17]和Fischer, Ghaffari和Kuhn [FOCS ' 17]的(2Δ−1)-边着色,积极地回答了后者的主要开放性问题。我们算法的关键技术成分是一种简单而新颖的渐进包装,明智地选择接近最大的匹配,每个匹配都成为一个颜色类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信