Design of Narrow-Band Absorber Based on Symmetric Silicon Grating and Research on Its Sensing Performance

Miao Pan, H. Huang, Wenzhi Chen, Shuai-Nan Li, Qin Xie, Feng Xu, Dongwei Wei, Jun Fang, Baodian Fan, L. Cai
{"title":"Design of Narrow-Band Absorber Based on Symmetric Silicon Grating and Research on Its Sensing Performance","authors":"Miao Pan, H. Huang, Wenzhi Chen, Shuai-Nan Li, Qin Xie, Feng Xu, Dongwei Wei, Jun Fang, Baodian Fan, L. Cai","doi":"10.3390/COATINGS11050553","DOIUrl":null,"url":null,"abstract":"In this paper, using the surface plasmon and Fabry–Perot (FP) cavity, the design of a symmetric silicon grating absorber is proposed. The time-domain finite difference method is used for simulation calculations. The basic unit structure is a dielectric grating composed of silicon dioxide, metal and silicon. Through the adjustment of geometric parameters, we have achieved the best of the symmetric silicon grating absorber. A narrowband absorption peak with an absorption rate greater than 99% is generated in the 3000–5000 nm optical band, and the wavelength of the absorption peak is λ = 3750 nm. The physical absorption mechanism is that silicon light generates surface plasmon waves under the interaction with incident light, and the electromagnetic field coupling of surface plasmon waves and light causes surface plasmon resonance, thereby exciting strong light response modulation. We also explore the influence of geometric parameters and polarization angle on the performance of silicon grating absorbers. Finally, we systematically study the refractive index sensitivity of these structures. These structures can be widely used in optical filtering, spectral sensing, gas detection and other fields.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"15 1","pages":"553"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11050553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, using the surface plasmon and Fabry–Perot (FP) cavity, the design of a symmetric silicon grating absorber is proposed. The time-domain finite difference method is used for simulation calculations. The basic unit structure is a dielectric grating composed of silicon dioxide, metal and silicon. Through the adjustment of geometric parameters, we have achieved the best of the symmetric silicon grating absorber. A narrowband absorption peak with an absorption rate greater than 99% is generated in the 3000–5000 nm optical band, and the wavelength of the absorption peak is λ = 3750 nm. The physical absorption mechanism is that silicon light generates surface plasmon waves under the interaction with incident light, and the electromagnetic field coupling of surface plasmon waves and light causes surface plasmon resonance, thereby exciting strong light response modulation. We also explore the influence of geometric parameters and polarization angle on the performance of silicon grating absorbers. Finally, we systematically study the refractive index sensitivity of these structures. These structures can be widely used in optical filtering, spectral sensing, gas detection and other fields.
基于对称硅光栅的窄带吸收器设计及其传感性能研究
本文利用表面等离子体和Fabry-Perot (FP)腔,设计了对称硅光栅吸收体。采用时域有限差分法进行仿真计算。其基本单元结构是由二氧化硅、金属和硅组成的介电光栅。通过几何参数的调整,达到了对称硅光栅吸收器的最佳性能。在3000 ~ 5000nm光带产生一个吸收率大于99%的窄带吸收峰,吸收峰的波长为λ = 3750nm。物理吸收机制是硅光在入射光的作用下产生表面等离子体波,表面等离子体波与光的电磁场耦合引起表面等离子体共振,从而激发强烈的光响应调制。我们还探讨了几何参数和偏振角对硅光栅吸收器性能的影响。最后,我们系统地研究了这些结构的折射率灵敏度。这些结构可广泛应用于光滤波、光谱传感、气体检测等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信