On cardinality of the lower sets and universal discretization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, S. Tikhonov
{"title":"On cardinality of the lower sets and universal discretization","authors":"F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, S. Tikhonov","doi":"10.48550/arXiv.2208.02113","DOIUrl":null,"url":null,"abstract":"A set $Q$ in $\\mathbb{Z}_+^d$ is a lower set if $(k_1,\\dots,k_d)\\in Q$ implies $(l_1,\\dots,l_d)\\in Q$ whenever $0\\le l_i\\le k_i$ for all $i$. We derive new and refine known results regarding the cardinality of the lower sets of size $n$ in $\\mathbb{Z}_+^d$. Next we apply these results for universal discretization of the $L_2$-norm of elements from $n$-dimensional subspaces of trigonometric polynomials generated by lower sets.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.02113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

A set $Q$ in $\mathbb{Z}_+^d$ is a lower set if $(k_1,\dots,k_d)\in Q$ implies $(l_1,\dots,l_d)\in Q$ whenever $0\le l_i\le k_i$ for all $i$. We derive new and refine known results regarding the cardinality of the lower sets of size $n$ in $\mathbb{Z}_+^d$. Next we apply these results for universal discretization of the $L_2$-norm of elements from $n$-dimensional subspaces of trigonometric polynomials generated by lower sets.
下集的基数性与泛离散化
一套 $Q$ 在 $\mathbb{Z}_+^d$ 下集合是if吗 $(k_1,\dots,k_d)\in Q$ 暗示 $(l_1,\dots,l_d)\in Q$ 无论何时 $0\le l_i\le k_i$ 对所有人 $i$. 我们得到新的和改进已知的结果关于较小的集合大小的基数 $n$ 在 $\mathbb{Z}_+^d$. 接下来,我们将这些结果应用于广义离散化 $L_2$-元素的范数 $n$由下集生成的三角多项式的-维子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信