Learning to Augment via Implicit Differentiation for Domain Generalization

Ting-Hsiang Wang, Da Li, Kaiyang Zhou, Tao Xiang, Yi-Zhe Song
{"title":"Learning to Augment via Implicit Differentiation for Domain Generalization","authors":"Ting-Hsiang Wang, Da Li, Kaiyang Zhou, Tao Xiang, Yi-Zhe Song","doi":"10.48550/arXiv.2210.14271","DOIUrl":null,"url":null,"abstract":"Machine learning models are intrinsically vulnerable to domain shift between training and testing data, resulting in poor performance in novel domains. Domain generalization (DG) aims to overcome the problem by leveraging multiple source domains to learn a domain-generalizable model. In this paper, we propose a novel augmentation-based DG approach, dubbed AugLearn. Different from existing data augmentation methods, our AugLearn views a data augmentation module as hyper-parameters of a classification model and optimizes the module together with the model via meta-learning. Specifically, at each training step, AugLearn (i) divides source domains into a pseudo source and a pseudo target set, and (ii) trains the augmentation module in such a way that the augmented (synthetic) images can make the model generalize well on the pseudo target set. Moreover, to overcome the expensive second-order gradient computation during meta-learning, we formulate an efficient joint training algorithm, for both the augmentation module and the classification model, based on the implicit function theorem. With the flexibility of augmenting data in both time and frequency spaces, AugLearn shows effectiveness on three standard DG benchmarks, PACS, Office-Home and Digits-DG.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"1 1","pages":"888"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.14271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning models are intrinsically vulnerable to domain shift between training and testing data, resulting in poor performance in novel domains. Domain generalization (DG) aims to overcome the problem by leveraging multiple source domains to learn a domain-generalizable model. In this paper, we propose a novel augmentation-based DG approach, dubbed AugLearn. Different from existing data augmentation methods, our AugLearn views a data augmentation module as hyper-parameters of a classification model and optimizes the module together with the model via meta-learning. Specifically, at each training step, AugLearn (i) divides source domains into a pseudo source and a pseudo target set, and (ii) trains the augmentation module in such a way that the augmented (synthetic) images can make the model generalize well on the pseudo target set. Moreover, to overcome the expensive second-order gradient computation during meta-learning, we formulate an efficient joint training algorithm, for both the augmentation module and the classification model, based on the implicit function theorem. With the flexibility of augmenting data in both time and frequency spaces, AugLearn shows effectiveness on three standard DG benchmarks, PACS, Office-Home and Digits-DG.
学习通过隐式微分进行领域泛化的增广
机器学习模型本质上容易受到训练和测试数据之间的领域转换的影响,从而导致在新领域的性能不佳。域泛化(DG)旨在通过利用多个源域来学习域泛化模型来克服这一问题。在本文中,我们提出了一种新的基于增强的DG方法,称为AugLearn。与现有的数据增强方法不同,我们的AugLearn将数据增强模块视为分类模型的超参数,并通过元学习与模型一起优化模块。具体来说,在每个训练步骤中,AugLearn (i)将源域划分为伪源和伪目标集,(ii)训练增强模块,使增强(合成)图像能够使模型在伪目标集上很好地泛化。此外,为了克服元学习过程中昂贵的二阶梯度计算,我们基于隐函数定理为增强模块和分类模型制定了一种高效的联合训练算法。凭借在时间和频率空间增加数据的灵活性,AugLearn在三个标准DG基准,PACS, Office-Home和digital -DG上显示出有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信