Artificial neural networks in vibration control of rotor-bearing systems

Yaagoub N. Al-Nassar, Mohsin Siddiqui, Ahmed Z. Al-Garni
{"title":"Artificial neural networks in vibration control of rotor-bearing systems","authors":"Yaagoub N. Al-Nassar,&nbsp;Mohsin Siddiqui,&nbsp;Ahmed Z. Al-Garni","doi":"10.1016/S0928-4869(00)00004-5","DOIUrl":null,"url":null,"abstract":"<div><p>A neural network controller is described and implemented for controlling the vibration of a rotor-bearing system. A multi-layered neural network is used to model the inverse dynamics or the rotor-bearing system on-line. It is learnt by a backpropagation algorithm, and a delta rule, in which the difference between the actual control input to the plant, which is generated from the neural controller, and the input estimated from the inverse-dynamics model by using an actual plant output, is minimized. The results show a satisfactory diminished response of the rotor-bearing system when the controller is applied to the system.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":"7 8","pages":"Pages 729-740"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(00)00004-5","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928486900000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A neural network controller is described and implemented for controlling the vibration of a rotor-bearing system. A multi-layered neural network is used to model the inverse dynamics or the rotor-bearing system on-line. It is learnt by a backpropagation algorithm, and a delta rule, in which the difference between the actual control input to the plant, which is generated from the neural controller, and the input estimated from the inverse-dynamics model by using an actual plant output, is minimized. The results show a satisfactory diminished response of the rotor-bearing system when the controller is applied to the system.

人工神经网络在转子-轴承系统振动控制中的应用
描述并实现了一种用于控制转子-轴承系统振动的神经网络控制器。采用多层神经网络对转子-轴承系统的逆动力学进行在线建模。它是通过反向传播算法和delta规则来学习的,其中由神经控制器生成的植物的实际控制输入与使用实际植物输出从逆动力学模型估计的输入之间的差异是最小的。结果表明,当该控制器应用于系统时,转子-轴承系统的响应得到了满意的减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信