{"title":"Mutagenic and cytotoxic activities of Limonium globuliferum methanol extracts.","authors":"Yasin Eren","doi":"10.1007/s10616-016-9951-8","DOIUrl":null,"url":null,"abstract":"<p><p>Unmonitored use of plant extractions alone or in combination with drugs may cause important health problems and toxic effects. Limonium (Plumbaginaceae) plants are known as antibacterial, anticancer and antivirus agent. But it is possible that this genus may have toxic effects. This study evaluated the mutagenic and cytotoxic effects of Limonium globuliferum (Boiss. et Heldr.) O. Kuntze (Plumbaginaceae) acetone/methanol (2:1), and methanol extracts of root, stem, and leaf. Different parts of this species were used in order to compare the mutagenic and cytotoxic effects of these parts. Ames test was carried out with S. typhimurium TA98, and TA100 strains. Strains were incubated at 37 °C for 72 h. MDBK cell line was used in MTT test. 10,000, 1000, 100, 10, 1 and 0.1 µg/plate concentrations of plant extracts were used in Ames test. 50, 25, 12.5, 6.25 and 3.125 µg/ml concentrations of root, stem and leaf acetone/methanol (2:1) and methanol extracts were used in MTT test. Ames test results indicated that only methanol leaf extract (10,000 µg/plate) had mutagenic activity. L. globuliferum root methanol extracts (3.125 and 6.25 µg/ml) increased the proliferation rates. Root acetone/methanol (2:1) extracts were found highly cytotoxic in all treatments. The results indicated that leaf extracts had lower cytotoxic effects than root and stem extracts. High concentrations of L. globuliferum stem and leaf methanol extracts showed cytotoxic activity in all treatment periods while low concentrations of the stem methanol extracts increased the proliferation rates. </p>","PeriodicalId":44226,"journal":{"name":"Revista De Historia Industrial","volume":"20 1","pages":"2115-24"},"PeriodicalIF":0.4000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Historia Industrial","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-016-9951-8","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Unmonitored use of plant extractions alone or in combination with drugs may cause important health problems and toxic effects. Limonium (Plumbaginaceae) plants are known as antibacterial, anticancer and antivirus agent. But it is possible that this genus may have toxic effects. This study evaluated the mutagenic and cytotoxic effects of Limonium globuliferum (Boiss. et Heldr.) O. Kuntze (Plumbaginaceae) acetone/methanol (2:1), and methanol extracts of root, stem, and leaf. Different parts of this species were used in order to compare the mutagenic and cytotoxic effects of these parts. Ames test was carried out with S. typhimurium TA98, and TA100 strains. Strains were incubated at 37 °C for 72 h. MDBK cell line was used in MTT test. 10,000, 1000, 100, 10, 1 and 0.1 µg/plate concentrations of plant extracts were used in Ames test. 50, 25, 12.5, 6.25 and 3.125 µg/ml concentrations of root, stem and leaf acetone/methanol (2:1) and methanol extracts were used in MTT test. Ames test results indicated that only methanol leaf extract (10,000 µg/plate) had mutagenic activity. L. globuliferum root methanol extracts (3.125 and 6.25 µg/ml) increased the proliferation rates. Root acetone/methanol (2:1) extracts were found highly cytotoxic in all treatments. The results indicated that leaf extracts had lower cytotoxic effects than root and stem extracts. High concentrations of L. globuliferum stem and leaf methanol extracts showed cytotoxic activity in all treatment periods while low concentrations of the stem methanol extracts increased the proliferation rates.