Detecting bacterial vaginosis using machine learning

Yolanda S. Baker, R. Agrawal, J. Foster, Daniel Beck, G. Dozier
{"title":"Detecting bacterial vaginosis using machine learning","authors":"Yolanda S. Baker, R. Agrawal, J. Foster, Daniel Beck, G. Dozier","doi":"10.1145/2638404.2638521","DOIUrl":null,"url":null,"abstract":"Bacterial Vaginosis (BV) is the most common of vaginal infections diagnosed among women during the years where they can bear children. Yet, there is very little insight as to how it occurs. There are a vast number of criteria that can be taken into consideration to determine the presence of BV. The purpose of this paper is two-fold; first to discover the most significant features necessary to diagnose the infection, second is to apply various classification algorithms on the selected features. It is observed that certain feature selection algorithms provide only a few features; however, the classification results are as good as using a large number of features.","PeriodicalId":91384,"journal":{"name":"Proceedings of the 2014 ACM Southeast Regional Conference","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM Southeast Regional Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638404.2638521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Bacterial Vaginosis (BV) is the most common of vaginal infections diagnosed among women during the years where they can bear children. Yet, there is very little insight as to how it occurs. There are a vast number of criteria that can be taken into consideration to determine the presence of BV. The purpose of this paper is two-fold; first to discover the most significant features necessary to diagnose the infection, second is to apply various classification algorithms on the selected features. It is observed that certain feature selection algorithms provide only a few features; however, the classification results are as good as using a large number of features.
使用机器学习检测细菌性阴道病
细菌性阴道病(BV)是最常见的阴道感染,在妇女中被诊断出在他们可以生育孩子的年龄。然而,人们对它是如何发生的却知之甚少。有大量的标准可以考虑,以确定细菌性阴道炎的存在。本文的目的是双重的;首先发现诊断感染所必需的最重要的特征,其次是对所选择的特征应用各种分类算法。观察到某些特征选择算法只提供少数特征;但是,使用大量特征的分类效果并不差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信