Region-based nonparametric optical flow segmentation with pre-clustering and post-clustering

K. Ma, Hai-Yun Wang
{"title":"Region-based nonparametric optical flow segmentation with pre-clustering and post-clustering","authors":"K. Ma, Hai-Yun Wang","doi":"10.1109/ICME.2002.1035548","DOIUrl":null,"url":null,"abstract":"A region-based nonparametric video object segmentation over an optical-flow field is proposed to overcome the drawbacks inherited in pixel-based parametric approaches. The key novelties of this approach are: (1) motion field smoothing; (2) pre-clustering and post-clustering. By utilizing both spatial and temporal information extracted from the input video sequence, the raw optical-flow field is partitioned into homogeneous regions, with each region undergoing a common translational motion. Such an objective can be achieved through iterative spatio-temporal processing until the predetermined error-tolerance threshold is met. To facilitate fuzzy c-means clustering, pre-clustering and post-clustering are proposed. Experimental results demonstrate that they also effectively contribute a much improved performance in video object segmentation.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"6 1","pages":"201-204 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A region-based nonparametric video object segmentation over an optical-flow field is proposed to overcome the drawbacks inherited in pixel-based parametric approaches. The key novelties of this approach are: (1) motion field smoothing; (2) pre-clustering and post-clustering. By utilizing both spatial and temporal information extracted from the input video sequence, the raw optical-flow field is partitioned into homogeneous regions, with each region undergoing a common translational motion. Such an objective can be achieved through iterative spatio-temporal processing until the predetermined error-tolerance threshold is met. To facilitate fuzzy c-means clustering, pre-clustering and post-clustering are proposed. Experimental results demonstrate that they also effectively contribute a much improved performance in video object segmentation.
基于预聚类和后聚类的区域非参数光流分割
针对基于像素的参数化分割方法存在的缺陷,提出了一种基于区域的光流场非参数化分割方法。该方法的主要新颖之处在于:(1)运动场平滑;(2)前聚类和后聚类。利用从输入视频序列中提取的空间和时间信息,将原始光流场划分为均匀区域,每个区域经历共同的平移运动。这样的目标可以通过迭代的时空处理来实现,直到满足预定的容错阈值。为了便于模糊c均值聚类,提出了预聚类和后聚类方法。实验结果表明,它们也有效地提高了视频对象分割的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信