{"title":"Copper Nanoparticles Supported on a Schiff base-Fullerene as Catalyst for Reduction of Nitrophenols and Organic Dyes","authors":"Serkan Dayan","doi":"10.18466/cbayarfbe.742711","DOIUrl":null,"url":null,"abstract":"The N-(3-((2-hydroxybenzylidene)amino)phenyl)benzamide Schiff base ligand (L) was synthesized, characterized, and immobilized on the fullerene material with reduction copper material. The result nanocomposite Cu/Ligand@Fullerene (M1) was characterized by FE-SEM EDX, EDX mapping, FT-IR, and XRD techniques and tested as a catalyst for reduction of nitrophenols (2-nitrophenol (2-NP), 4-nitrophenol (4-NP)) and organic dyes (methylene blue (M.B.), Rhodamine B (Rh. B)) under ambient temperature in water. The catalytic conversions and the reaction rate constant per total weight of the M1 catalyst were recorded as 89.9% and 2.71E+00 at 300 s for 2-nitrophenol, 97.9% and 5.12E+00 at 300 s for 4-nitrophenol, 90.6% and 2.72E+01 at 360 s for Rhodamine B, and 98.3% and 2.63E+00 at 60 s for methylene blue. For 4-NP, the reusability study was carried out as five cycles with 97.9%, 97.7%, 97.7%, 97.3%, and 87.3% conversions, respectively. The fabricated Cu/Ligand@Fullerene (M1) nanocomposite has good catalytic efficiency and reusability, low cost, and easy to produce.","PeriodicalId":9652,"journal":{"name":"Celal Bayar Universitesi Fen Bilimleri Dergisi","volume":"123 4 1","pages":"285-291"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celal Bayar Universitesi Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18466/cbayarfbe.742711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The N-(3-((2-hydroxybenzylidene)amino)phenyl)benzamide Schiff base ligand (L) was synthesized, characterized, and immobilized on the fullerene material with reduction copper material. The result nanocomposite Cu/Ligand@Fullerene (M1) was characterized by FE-SEM EDX, EDX mapping, FT-IR, and XRD techniques and tested as a catalyst for reduction of nitrophenols (2-nitrophenol (2-NP), 4-nitrophenol (4-NP)) and organic dyes (methylene blue (M.B.), Rhodamine B (Rh. B)) under ambient temperature in water. The catalytic conversions and the reaction rate constant per total weight of the M1 catalyst were recorded as 89.9% and 2.71E+00 at 300 s for 2-nitrophenol, 97.9% and 5.12E+00 at 300 s for 4-nitrophenol, 90.6% and 2.72E+01 at 360 s for Rhodamine B, and 98.3% and 2.63E+00 at 60 s for methylene blue. For 4-NP, the reusability study was carried out as five cycles with 97.9%, 97.7%, 97.7%, 97.3%, and 87.3% conversions, respectively. The fabricated Cu/Ligand@Fullerene (M1) nanocomposite has good catalytic efficiency and reusability, low cost, and easy to produce.