Liquid-Free Covalent Reinforcement of Carbon Nanotube Dry-Spun Yarns and Free-Standing Sheets

X. Lepró, C. Aracne-Ruddle, D. Malone, Haley Hamza, E. Schaible, S. Buchsbaum, Alicia Calonico-Soto, J. Bigelow, E. Meshot, S. Baxamusa, M. Stadermann
{"title":"Liquid-Free Covalent Reinforcement of Carbon Nanotube Dry-Spun Yarns and Free-Standing Sheets","authors":"X. Lepró, C. Aracne-Ruddle, D. Malone, Haley Hamza, E. Schaible, S. Buchsbaum, Alicia Calonico-Soto, J. Bigelow, E. Meshot, S. Baxamusa, M. Stadermann","doi":"10.2139/ssrn.3937822","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) possess exceptional mechanical properties, surpassing stiffness and strength metrics of common materials such as steel alloys by 100× at the nanoscale. However, when myriads of individual CNTs are bundled together into macroscopic ensembles like fibers or sheets, the result is a 100-fold drop in strength compared to its individual components. Here we present a general strategy aimed to close this gap in property scaling. By using vapor-phase polymerization of a cross-linkable polymer, we reinforced the weak interlinkages among individual CNTs within both yarns and sheets to promote a better transference of mechanical load across the structure. After the treatment, dry-spun, low-density 2.3 μm thin yarns increased their elastic moduli by at least 300%, and free-standing CNT sheets exhibited a 10× boost. In-situ synchrotron small-angle X-ray scattering revealed that polymer-reinforced yarns undergo limited CNT bundle rearrangement when subjected to tensile loads compared to pristine yarns. This evidence supports the hypothesis that the polymer hinders CNTs slippage, the root cause of the poor scaling of mechanical properties in these materials. While we demonstrated this reinforcement method for CNT structures, it is not specific to CNTs and could be used to reinforce a wide variety of hierarchical nanostructured ensembles.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3937822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Carbon nanotubes (CNTs) possess exceptional mechanical properties, surpassing stiffness and strength metrics of common materials such as steel alloys by 100× at the nanoscale. However, when myriads of individual CNTs are bundled together into macroscopic ensembles like fibers or sheets, the result is a 100-fold drop in strength compared to its individual components. Here we present a general strategy aimed to close this gap in property scaling. By using vapor-phase polymerization of a cross-linkable polymer, we reinforced the weak interlinkages among individual CNTs within both yarns and sheets to promote a better transference of mechanical load across the structure. After the treatment, dry-spun, low-density 2.3 μm thin yarns increased their elastic moduli by at least 300%, and free-standing CNT sheets exhibited a 10× boost. In-situ synchrotron small-angle X-ray scattering revealed that polymer-reinforced yarns undergo limited CNT bundle rearrangement when subjected to tensile loads compared to pristine yarns. This evidence supports the hypothesis that the polymer hinders CNTs slippage, the root cause of the poor scaling of mechanical properties in these materials. While we demonstrated this reinforcement method for CNT structures, it is not specific to CNTs and could be used to reinforce a wide variety of hierarchical nanostructured ensembles.
碳纳米管干纺纱线和独立片材的无液共价增强
碳纳米管(CNTs)具有优异的机械性能,在纳米尺度上超过普通材料(如钢合金)的刚度和强度指标100倍。然而,当无数个单独的碳纳米管捆绑在一起形成宏观整体,如纤维或片材时,其结果是强度与其单个成分相比下降了100倍。在这里,我们提出了一个总体策略,旨在缩小这一差距的属性缩放。通过使用可交联聚合物的气相聚合,我们加强了纱线和片材中单个碳纳米管之间的弱相互连接,以促进机械负荷在整个结构中的更好传递。经过处理后,干纺低密度2.3 μm细纱的弹性模量增加了至少300%,独立碳纳米管片的弹性模量增加了10倍。原位同步加速器小角度x射线散射显示,与原始纱线相比,聚合物增强纱线在受到拉伸载荷时,碳纳米管束重排有限。这一证据支持了聚合物阻碍碳纳米管滑移的假设,而碳纳米管滑移是导致这些材料力学性能不稳定的根本原因。虽然我们证明了这种碳纳米管结构的强化方法,但它不是碳纳米管特有的,可以用于强化各种层次的纳米结构集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信