An Efficient CFD Approach for Co-Axial Rotor Simulations

Jason K. Cornelius, M. Kinzel, S. Schmitz
{"title":"An Efficient CFD Approach for Co-Axial Rotor Simulations","authors":"Jason K. Cornelius, M. Kinzel, S. Schmitz","doi":"10.2514/6.2019-1658","DOIUrl":null,"url":null,"abstract":"The advent of small-scale multicopter aircraft including quadand octocopter configurations has opened the door to cost-effective vertical flight technology. These aircraft are intended to be used in applications such as public transportation, recreational products, commercial tools, military technologies, and even extra-terrestrial planetary exploration. As the demand for these aircraft continues to rise, analysis capabilities for their design and performance prediction become increasingly useful. The complex problem involving rotor-rotor interactions calls for highfidelity prediction tools, but conventional approaches with these tools have immense computational demand. In this work, a computational fluid dynamics model is developed to analyze a co-axial configuration and is compared to conventional results. The methodology, benchmarking process, and preliminary results indicate that the modeling approach, which reduces the computational cost by more than two orders-of-magnitude over the conventional solution method, has potential for future analyses to support design.","PeriodicalId":93407,"journal":{"name":"AIAA Atmospheric Flight Mechanics Conference 2019 : papers presented at the AIAA SciTech Forum and Exposition 2019, San Diego, California, USA, 7-11 January 2019. AIAA SciTech Forum and Exposition (2019 : San Diego, Calif.)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Atmospheric Flight Mechanics Conference 2019 : papers presented at the AIAA SciTech Forum and Exposition 2019, San Diego, California, USA, 7-11 January 2019. AIAA SciTech Forum and Exposition (2019 : San Diego, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2019-1658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The advent of small-scale multicopter aircraft including quadand octocopter configurations has opened the door to cost-effective vertical flight technology. These aircraft are intended to be used in applications such as public transportation, recreational products, commercial tools, military technologies, and even extra-terrestrial planetary exploration. As the demand for these aircraft continues to rise, analysis capabilities for their design and performance prediction become increasingly useful. The complex problem involving rotor-rotor interactions calls for highfidelity prediction tools, but conventional approaches with these tools have immense computational demand. In this work, a computational fluid dynamics model is developed to analyze a co-axial configuration and is compared to conventional results. The methodology, benchmarking process, and preliminary results indicate that the modeling approach, which reduces the computational cost by more than two orders-of-magnitude over the conventional solution method, has potential for future analyses to support design.
同轴转子仿真的一种高效CFD方法
小型多旋翼飞机的出现,包括四旋翼和八旋翼构型,为经济高效的垂直飞行技术打开了大门。这些飞行器将用于公共交通、娱乐产品、商业工具、军事技术,甚至是地外行星探测等应用。随着对这些飞机的需求不断增加,对其设计和性能预测的分析能力变得越来越有用。涉及转子-转子相互作用的复杂问题需要高保真度的预测工具,但传统的方法对这些工具的计算需求巨大。在这项工作中,建立了计算流体动力学模型来分析同轴结构,并与常规结果进行了比较。方法、基准测试过程和初步结果表明,建模方法比传统的解决方法减少了两个数量级以上的计算成本,具有未来分析支持设计的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信