Real roots near the unit circle of random polynomials

Marcus Michelen
{"title":"Real roots near the unit circle of random polynomials","authors":"Marcus Michelen","doi":"10.1090/TRAN/8379","DOIUrl":null,"url":null,"abstract":"Let $f_n(z) = \\sum_{k = 0}^n \\varepsilon_k z^k$ be a random polynomial where $\\varepsilon_0,\\ldots,\\varepsilon_n$ are i.i.d. random variables with $\\mathbb{E} \\varepsilon_1 = 0$ and $\\mathbb{E} \\varepsilon_1^2 = 1$. Letting $r_1, r_2,\\ldots, r_k$ denote the real roots of $f_n$, we show that the point process defined by $\\{|r_1| - 1,\\ldots, |r_k| - 1 \\}$ converges to a non-Poissonian limit on the scale of $n^{-1}$ as $n \\to \\infty$. Further, we show that for each $\\delta > 0$, $f_n$ has a real root within $\\Theta_{\\delta}(1/n)$ of the unit circle with probability at least $1 - \\delta$. This resolves a conjecture of Shepp and Vanderbei from 1995 by confirming its weakest form and refuting its strongest form.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"55 33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let $f_n(z) = \sum_{k = 0}^n \varepsilon_k z^k$ be a random polynomial where $\varepsilon_0,\ldots,\varepsilon_n$ are i.i.d. random variables with $\mathbb{E} \varepsilon_1 = 0$ and $\mathbb{E} \varepsilon_1^2 = 1$. Letting $r_1, r_2,\ldots, r_k$ denote the real roots of $f_n$, we show that the point process defined by $\{|r_1| - 1,\ldots, |r_k| - 1 \}$ converges to a non-Poissonian limit on the scale of $n^{-1}$ as $n \to \infty$. Further, we show that for each $\delta > 0$, $f_n$ has a real root within $\Theta_{\delta}(1/n)$ of the unit circle with probability at least $1 - \delta$. This resolves a conjecture of Shepp and Vanderbei from 1995 by confirming its weakest form and refuting its strongest form.
随机多项式单位圆附近的实根
设$f_n(z) = \sum_{k = 0}^n \varepsilon_k z^k$为随机多项式,其中$\varepsilon_0,\ldots,\varepsilon_n$为i.i.d.随机变量,$\mathbb{E} \varepsilon_1 = 0$和$\mathbb{E} \varepsilon_1^2 = 1$。让$r_1, r_2,\ldots, r_k$表示$f_n$的实根,我们证明了$\{|r_1| - 1,\ldots, |r_k| - 1 \}$定义的点过程在$n^{-1}$的尺度上收敛到一个非泊松极限为$n \to \infty$。进一步,我们证明了对于每个$\delta > 0$, $f_n$在单位圆的$\Theta_{\delta}(1/n)$内有一个实根,概率至少为$1 - \delta$。这解决了1995年Shepp和Vanderbei的一个猜想,证实了它的最弱形式,驳斥了它的最强形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信