Design and fabrication of TaN bottom electrode thermal sensing resistor for MEMs based bolometer application

Xiaoxu Kang, Jiaqing Li, Chao Yuan, Shoumian Chen, Yuhang Zhao
{"title":"Design and fabrication of TaN bottom electrode thermal sensing resistor for MEMs based bolometer application","authors":"Xiaoxu Kang, Jiaqing Li, Chao Yuan, Shoumian Chen, Yuhang Zhao","doi":"10.1142/S0218126613400215","DOIUrl":null,"url":null,"abstract":"In this work, TaN bottom electrode thermal sensing resistor for MEMs based bolometer was fabricated by 200mm Cu-BEOL compatible process. Thermal sensing material was B-doped alpha-Si deposited by PECVD in-situ doping process. PVD TaN film was used as bottom electrode. Dedicated process on modified tool was introduced to achieve a good contact between TaN and sensing material. There are both CVD and ETCH chamber installed on this modified tool. Wafer with bottom electrode pattern was pre-cleaned firstly by low-power Ar/CF4 gas to remove oxide and possible surface residue on TaN in etch chamber. Then the wafer was transferred to CVD chamber through transfer chamber in vacuum condition. With vacuum transfer condition and tightly Q-time control, ohmic contact can be achieved for the TaN bottom electrode and B-doped alpha-Si. Through the IV curve and TCR data it can be seen that bottom electrode device can well meet the MEMs-based bolometer requirements.","PeriodicalId":6363,"journal":{"name":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218126613400215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, TaN bottom electrode thermal sensing resistor for MEMs based bolometer was fabricated by 200mm Cu-BEOL compatible process. Thermal sensing material was B-doped alpha-Si deposited by PECVD in-situ doping process. PVD TaN film was used as bottom electrode. Dedicated process on modified tool was introduced to achieve a good contact between TaN and sensing material. There are both CVD and ETCH chamber installed on this modified tool. Wafer with bottom electrode pattern was pre-cleaned firstly by low-power Ar/CF4 gas to remove oxide and possible surface residue on TaN in etch chamber. Then the wafer was transferred to CVD chamber through transfer chamber in vacuum condition. With vacuum transfer condition and tightly Q-time control, ohmic contact can be achieved for the TaN bottom electrode and B-doped alpha-Si. Through the IV curve and TCR data it can be seen that bottom electrode device can well meet the MEMs-based bolometer requirements.
微机电热计用TaN底电极热敏电阻的设计与制作
本文采用200mm Cu-BEOL兼容工艺制备了用于MEMs热计的TaN底电极热敏电阻。采用PECVD原位掺杂工艺制备了b掺杂α -si热敏材料。采用PVD TaN薄膜作为底电极。介绍了在改性工具上的专用工艺,以实现TaN与传感材料的良好接触。在这个改进的工具上安装了CVD和ETCH腔。首先用低功率Ar/CF4气体对具有底部电极图案的硅片进行预清洗,去除氧化和可能残留在TaN表面的残留物。然后在真空条件下通过转移室将晶圆转移到CVD室。在真空传递条件和严格的Q-time控制下,TaN底电极与掺杂b的α - si可以实现欧姆接触。通过IV曲线和TCR数据可以看出,底电极装置可以很好地满足基于mems的测热仪的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信