An improved non-local mean filter filtering algorithm facing the cerebrovascular segmentation

陈. C. Xing, 宋智洋 Song Zhi-yang, 周明全 Zhou Ming-quan, 武仲科 Wu Zhong-ke, 王醒策 Wang Xing-ce
{"title":"An improved non-local mean filter filtering algorithm facing the cerebrovascular segmentation","authors":"陈. C. Xing, 宋智洋 Song Zhi-yang, 周明全 Zhou Ming-quan, 武仲科 Wu Zhong-ke, 王醒策 Wang Xing-ce","doi":"10.3788/CO.20140704.0572","DOIUrl":null,"url":null,"abstract":"We introduce the classical non-local means filtering algorithm and the improved non-local means filtering algorithm with the weight function modified by Manjon. In this paper,we propose different weight function,and make it have rotating shift invariance for the local windows while keeping the time complexity of optimizing the visual effect and SNR. By adding noise standard deviation from Gaussian additive noise ranging from 10 to 100,we compare the improved algorithms with traditional filtering algorithms and Manjon non-mean filtering algorithm. The results show that the improved algorithm from either visual or numerical is superior to Manjon non-mean filtering algorithm.","PeriodicalId":10133,"journal":{"name":"Chinese Journal of Optics and Applied Optics","volume":"135 1","pages":"572-580"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Optics and Applied Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/CO.20140704.0572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce the classical non-local means filtering algorithm and the improved non-local means filtering algorithm with the weight function modified by Manjon. In this paper,we propose different weight function,and make it have rotating shift invariance for the local windows while keeping the time complexity of optimizing the visual effect and SNR. By adding noise standard deviation from Gaussian additive noise ranging from 10 to 100,we compare the improved algorithms with traditional filtering algorithms and Manjon non-mean filtering algorithm. The results show that the improved algorithm from either visual or numerical is superior to Manjon non-mean filtering algorithm.
一种面向脑血管分割的改进非局部均值滤波算法
介绍了经典的非局部均值滤波算法和经Manjon修正的权函数改进的非局部均值滤波算法。在本文中,我们提出了不同的权重函数,并使其在保持优化视觉效果和信噪比的时间复杂度的同时,对局部窗口具有旋转移位不变性。通过加入10 ~ 100范围内的高斯加性噪声标准差,将改进算法与传统滤波算法和Manjon非均值滤波算法进行比较。结果表明,改进后的算法无论从视觉上还是数值上都优于Manjon非均值滤波算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信