Weak localization of waves

E. Akkermans, R. Maynard
{"title":"Weak localization of waves","authors":"E. Akkermans, R. Maynard","doi":"10.1051/JPHYSLET:0198500460220104500","DOIUrl":null,"url":null,"abstract":"The weak localization of waves is formulated in terms of coherent multiple scattering theory. This leads, in the backscattering direction, to an enhancement of the differential cross-section. It manifests itself macroscopically by the doubling of the backscattering intensity in a narrow cone of width φ c =λ/l•θ(Ω)/τ, where θ(Ω) is the residence time around the incident direction. The corrections to transport coefficients are then derived both in two and three dimensions in terms of φ c . An e-expansion around the lower critical dimension d c =2 is then performed and leads to a wave localization threshold for d>2 around which the critical behaviour is studied. Different kinds of experimental situations leading to the observation of this backscattering cone and critical exponents are then discussed Obtention de la localisation faible des ondes a partir d'une theorie de la diffusion multiple coherente, ce qui conduit a une augmentation de la section efficace differentielle dans la direction de retrodiffusion et, macroscopiquement, a une valeur double de l'intensite retrodiffusee dans un cone tres etroit autour de la direction d'incidence (ouverture angulaire φ c ). Corrections aux coefficients de transport a 2 et 3 dimensions a partir de φ c","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"74 1","pages":"1045-1053"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:0198500460220104500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

The weak localization of waves is formulated in terms of coherent multiple scattering theory. This leads, in the backscattering direction, to an enhancement of the differential cross-section. It manifests itself macroscopically by the doubling of the backscattering intensity in a narrow cone of width φ c =λ/l•θ(Ω)/τ, where θ(Ω) is the residence time around the incident direction. The corrections to transport coefficients are then derived both in two and three dimensions in terms of φ c . An e-expansion around the lower critical dimension d c =2 is then performed and leads to a wave localization threshold for d>2 around which the critical behaviour is studied. Different kinds of experimental situations leading to the observation of this backscattering cone and critical exponents are then discussed Obtention de la localisation faible des ondes a partir d'une theorie de la diffusion multiple coherente, ce qui conduit a une augmentation de la section efficace differentielle dans la direction de retrodiffusion et, macroscopiquement, a une valeur double de l'intensite retrodiffusee dans un cone tres etroit autour de la direction d'incidence (ouverture angulaire φ c ). Corrections aux coefficients de transport a 2 et 3 dimensions a partir de φ c
波的弱局部化
用相干多重散射理论阐述了波的弱局域化。这导致,在后向散射方向,微分截面的增强。它在宏观上表现为在宽度φ c =λ/l•θ(Ω)/τ的窄锥内后向散射强度加倍,其中θ(Ω)为入射方向周围的停留时间。然后用φ c在二维和三维中推导输运系数的修正。然后在较低的临界维d c =2周围进行e展开,并导致d>2的波局部化阈值,围绕该阈值研究临界行为。然后讨论了导致该后向散射锥和临界指数观测的不同实验情况。注意局部化、局部化、局部化、局部扩散、多相干理论、局部增强、截面效率微分、反向扩散方向等。一个单一的价值,双重的强度,反向扩散,但uncone树,etrit autour的方向,入射(ouverture角角aire φ c)。对输运系数在2和3个维度上对φ c的修正
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信