{"title":"Enhanced Thermoelectric Performance of Bi2Te3 through Uniform Dispersion of Ti3C2Tx","authors":"Jian-ying Zhao, Zhengyong Huang, Jian Li, Feipeng Wang, Huijun Liao, Wenjie Xu","doi":"10.1109/ICEMPE51623.2021.9509068","DOIUrl":null,"url":null,"abstract":"As traditional thermoelectric material, Bi<inf>2</inf>Te<inf>3</inf> exhibits excellent thermoelectric properties near room temperature. Thermoelectric properties include electrical properties and thermal properties. In the study, we focused on the improvement of electrical properties. The electrical conductivity and Seebeck coefficient are two parameters for electrical properties. By combining Ti<inf>3</inf>C<inf>2</inf>T<inf>x</inf> with high conductivity, the electrical conductivity and Seebeck coefficient of the material can be significantly improved. Ti<inf>3</inf>C<inf>2</inf>T<inf>x</inf> with different volume fraction(0.5, 1, 2vol%) was mixed with Bi<inf>2</inf>Te<inf>3</inf> by grinding and vigorously stirring. The bulk sample was obtained by cold sintering process. When the volume fraction of Ti<inf>3</inf>C<inf>2</inf>T<inf>x</inf> is 2vol%, the conductivity is significantly increased and the Seebeck coefficient is up to 225mV/K, which results in a high power factor of 1.35W/mK<sup>2</sup>. The results show that the power factor improvement due to the introduction of two-dimensional Ti<inf>2</inf>C<inf>2</inf>T<inf>x</inf> in Bi<inf>2</inf>Te<inf>3</inf> is attributed to the quantum confinement effect. Therefore, when the content of Ti<inf>3</inf>C<inf>2</inf>T<inf>x</inf> is 2 vol%, the thermoelectric performance at 500K has been significantly improved.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As traditional thermoelectric material, Bi2Te3 exhibits excellent thermoelectric properties near room temperature. Thermoelectric properties include electrical properties and thermal properties. In the study, we focused on the improvement of electrical properties. The electrical conductivity and Seebeck coefficient are two parameters for electrical properties. By combining Ti3C2Tx with high conductivity, the electrical conductivity and Seebeck coefficient of the material can be significantly improved. Ti3C2Tx with different volume fraction(0.5, 1, 2vol%) was mixed with Bi2Te3 by grinding and vigorously stirring. The bulk sample was obtained by cold sintering process. When the volume fraction of Ti3C2Tx is 2vol%, the conductivity is significantly increased and the Seebeck coefficient is up to 225mV/K, which results in a high power factor of 1.35W/mK2. The results show that the power factor improvement due to the introduction of two-dimensional Ti2C2Tx in Bi2Te3 is attributed to the quantum confinement effect. Therefore, when the content of Ti3C2Tx is 2 vol%, the thermoelectric performance at 500K has been significantly improved.