An Heuristics-Based, Weakly-Supervised Approach for Classification of Stance in Tweets

Marcelo Dias, Karin Becker
{"title":"An Heuristics-Based, Weakly-Supervised Approach for Classification of Stance in Tweets","authors":"Marcelo Dias, Karin Becker","doi":"10.1109/WI.2016.0021","DOIUrl":null,"url":null,"abstract":"Stance detection is the task of automatically identifying if the text author is in favor or against a subject or target. This paper presents a weakly supervised approach for stance detection in tweets based solely on their contents. The approach relies on a set of heuristics used to automatically label tweets with regard to stance, which has a twofold purpose: a) automatic creation of a training corpus to develop a predictive model using a supervised learning algorithm, and b) to complement the predictive model when determining the stance of tweets. The paper analyzes the performance of the approach considering six distinct stance targets. We achieved promising results, with weighted F-measure varying from 52% to 67%.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"3 1","pages":"73-80"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stance detection is the task of automatically identifying if the text author is in favor or against a subject or target. This paper presents a weakly supervised approach for stance detection in tweets based solely on their contents. The approach relies on a set of heuristics used to automatically label tweets with regard to stance, which has a twofold purpose: a) automatic creation of a training corpus to develop a predictive model using a supervised learning algorithm, and b) to complement the predictive model when determining the stance of tweets. The paper analyzes the performance of the approach considering six distinct stance targets. We achieved promising results, with weighted F-measure varying from 52% to 67%.
基于启发式、弱监督的推文立场分类方法
立场检测是自动识别文本作者是支持还是反对某个主题或目标的任务。本文提出了一种弱监督方法,用于仅基于推文内容的姿态检测。该方法依赖于一组启发式方法,用于根据立场自动标记推文,这有两个目的:a)使用监督学习算法自动创建训练语料库以开发预测模型,b)在确定推文的立场时补充预测模型。本文分析了该方法在考虑六种不同姿态目标时的性能。我们取得了令人鼓舞的结果,加权f值从52%到67%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信