{"title":"Kähler manifolds with almost nonnegative\ncurvature","authors":"Man-Chun Lee, Luen-Fai Tam","doi":"10.2140/gt.2021.25.1979","DOIUrl":null,"url":null,"abstract":"In this paper, we construct local and global solutions to the Kahler-Ricci flow from a non-collapsed Kahler manifold with curvature bounded from below. Combines with the mollification technique of McLeod-Simon-Topping, we show that the Gromov-Hausdorff limit of sequence of complete noncompact non-collapsed Kahler manifolds with orthogonal bisectional curvature and Ricci curvature bounded from below is homeomorphic to a complex manifold. We also use it to study the complex structure of complete Kahler manifolds with nonnegative orthogonal bisectional curvature, nonnegative Ricci curvature and maximal volume growth.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1979","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we construct local and global solutions to the Kahler-Ricci flow from a non-collapsed Kahler manifold with curvature bounded from below. Combines with the mollification technique of McLeod-Simon-Topping, we show that the Gromov-Hausdorff limit of sequence of complete noncompact non-collapsed Kahler manifolds with orthogonal bisectional curvature and Ricci curvature bounded from below is homeomorphic to a complex manifold. We also use it to study the complex structure of complete Kahler manifolds with nonnegative orthogonal bisectional curvature, nonnegative Ricci curvature and maximal volume growth.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.