{"title":"Recognizing human activities in Industry 4.0 scenarios through an analysis-modeling- recognition algorithm and context labels","authors":"Borja Bordel, R. Alcarria, T. Robles","doi":"10.3233/ica-210667","DOIUrl":null,"url":null,"abstract":"Activity recognition technologies only present a good performance in controlled conditions, where a limited number of actions are allowed. On the contrary, industrial applications are scenarios with real and uncontrolled conditions where thousands of different activities (such as transporting or manufacturing craft products), with an incredible variability, may be developed. In this context, new and enhanced human activity recognition technologies are needed. Therefore, in this paper, a new activity recognition technology, focused on Industry 4.0 scenarios, is proposed. The proposed mechanism consists of different steps, including a first analysis phase where physical signals are processed using moving averages, filters and signal processing techniques, and an atomic recognition step where Dynamic Time Warping technologies and k-nearest neighbors solutions are integrated; a second phase where activities are modeled using generalized Markov models and context labels are recognized using a multi-layer perceptron; and a third step where activities are recognized using the previously created Markov models and context information, formatted as labels. The proposed solution achieves the best recognition rate of 87% which demonstrates the efficacy of the described method. Compared to the state-of-the-art solutions, an improvement up to 10% is reported.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"42 1","pages":"83-103"},"PeriodicalIF":5.8000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-210667","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 11
Abstract
Activity recognition technologies only present a good performance in controlled conditions, where a limited number of actions are allowed. On the contrary, industrial applications are scenarios with real and uncontrolled conditions where thousands of different activities (such as transporting or manufacturing craft products), with an incredible variability, may be developed. In this context, new and enhanced human activity recognition technologies are needed. Therefore, in this paper, a new activity recognition technology, focused on Industry 4.0 scenarios, is proposed. The proposed mechanism consists of different steps, including a first analysis phase where physical signals are processed using moving averages, filters and signal processing techniques, and an atomic recognition step where Dynamic Time Warping technologies and k-nearest neighbors solutions are integrated; a second phase where activities are modeled using generalized Markov models and context labels are recognized using a multi-layer perceptron; and a third step where activities are recognized using the previously created Markov models and context information, formatted as labels. The proposed solution achieves the best recognition rate of 87% which demonstrates the efficacy of the described method. Compared to the state-of-the-art solutions, an improvement up to 10% is reported.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.