M. Nandeppanavar, R. S. Reddy Gorla, S. Shakunthala
{"title":"Magneto-hydrodynamic Blasius flow and heat transfer from a flat plate in the presence of suspended carbon nanofluids","authors":"M. Nandeppanavar, R. S. Reddy Gorla, S. Shakunthala","doi":"10.1177/2397791417744702","DOIUrl":null,"url":null,"abstract":"In this article, we have discussed the effect of external magnetic field and other governing parameters on the flow and heat transfer in the presence of suspended carbon nanotubes over a flat plate. The governing equations of flow and heat transfer are derived from the Navier–Stokes and Prandtl boundary layer concept. The derived governing equations of flow and energy are non-linear partial differential equation, and these equations are converted into non-linear ordinary differential equations with corresponding boundary conditions using some suitable similarity transformations and are solved numerically using fourth-order Runge–Kutta method with efficient shooting technique. Effects of governing parameters on flow and heat transfer are shown through various graphs and explained with physical interpretation in detail. This study has applications in glass-fiber production and technology. On observing the results of this study, we can conclude that external magnetic field shows opposite behaviors on velocity and temperature and it enhances the rate of heat transfer.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"30 1","pages":"31 - 40"},"PeriodicalIF":4.2000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791417744702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 10
Abstract
In this article, we have discussed the effect of external magnetic field and other governing parameters on the flow and heat transfer in the presence of suspended carbon nanotubes over a flat plate. The governing equations of flow and heat transfer are derived from the Navier–Stokes and Prandtl boundary layer concept. The derived governing equations of flow and energy are non-linear partial differential equation, and these equations are converted into non-linear ordinary differential equations with corresponding boundary conditions using some suitable similarity transformations and are solved numerically using fourth-order Runge–Kutta method with efficient shooting technique. Effects of governing parameters on flow and heat transfer are shown through various graphs and explained with physical interpretation in detail. This study has applications in glass-fiber production and technology. On observing the results of this study, we can conclude that external magnetic field shows opposite behaviors on velocity and temperature and it enhances the rate of heat transfer.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.