Anti-Spoofing of Live Face Authentication on Smartphone

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Tz-Chia Tseng, Teng-Fu Shih, C. Fuh
{"title":"Anti-Spoofing of Live Face Authentication on Smartphone","authors":"Tz-Chia Tseng, Teng-Fu Shih, C. Fuh","doi":"10.6688/JISE.20210537(3).0007","DOIUrl":null,"url":null,"abstract":"Our proposed method is capable of authenticating the input image is from real user or spoofing attack, including paper photograph, digital photograph, and video, using only the Red, Green, Blue (RGB) frontal camera of common smart phone, without the help of depth camera or infrared thermal sensor. We first capture live faces in each frame of input video streams by single shot multi-box detector then feed into our designed convolution neural network after certain data augmentation and finally obtain a well-trained spoof face classifier. Finally, we compared to Parkin and Grinchuk’s results, using dataset CASIASURF[1], and compare the result of vgg16, InceptionNet, ResNet, DenseNet and MobileNet in CASIA-SURFT dataset.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"17 1","pages":"605-616"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.20210537(3).0007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Our proposed method is capable of authenticating the input image is from real user or spoofing attack, including paper photograph, digital photograph, and video, using only the Red, Green, Blue (RGB) frontal camera of common smart phone, without the help of depth camera or infrared thermal sensor. We first capture live faces in each frame of input video streams by single shot multi-box detector then feed into our designed convolution neural network after certain data augmentation and finally obtain a well-trained spoof face classifier. Finally, we compared to Parkin and Grinchuk’s results, using dataset CASIASURF[1], and compare the result of vgg16, InceptionNet, ResNet, DenseNet and MobileNet in CASIA-SURFT dataset.
智能手机实时人脸认证的防欺骗研究
该方法仅使用普通智能手机的RGB (Red, Green, Blue)前置摄像头,无需深度摄像头或红外热传感器,即可验证输入图像是否来自真实用户或欺骗攻击,包括纸质照片、数码照片和视频。我们首先通过单镜头多盒检测器捕获输入视频流中每帧的实时人脸,然后经过一定的数据增强后输入到我们设计的卷积神经网络中,最终得到训练良好的欺骗人脸分类器。最后,我们比较了Parkin和Grinchuk的结果,使用数据集CASIASURF[1],并比较了CASIA-SURFT数据集中的vgg16、InceptionNet、ResNet、DenseNet和MobileNet的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Science and Engineering
Journal of Information Science and Engineering 工程技术-计算机:信息系统
CiteScore
2.00
自引率
0.00%
发文量
4
审稿时长
8 months
期刊介绍: The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信