Loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling: Unified analysis for parabolic/parabolic and parabolic/hyperbolic problems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
E. Burman, R. Durst, Miguel A. Fern'andez, Johnny Guzm'an
{"title":"Loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling: Unified analysis for parabolic/parabolic and parabolic/hyperbolic problems","authors":"E. Burman, R. Durst, Miguel A. Fern'andez, Johnny Guzm'an","doi":"10.1515/jnma-2021-0119","DOIUrl":null,"url":null,"abstract":"Abstract We present a loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling conditions. We apply a novel unified analysis for this scheme applied to both a parabolic/parabolic coupled system and a parabolic/hyperbolic coupled system. We show for both systems that the scheme is stable, and the error converges as O(ΔtT+log(1Δt)), $\\mathcal{O}\\big({\\Delta t} \\sqrt{T +\\log(\\frac{1}{{\\Delta t}})}\\big),$where Δt is the time step.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0119","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We present a loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling conditions. We apply a novel unified analysis for this scheme applied to both a parabolic/parabolic coupled system and a parabolic/hyperbolic coupled system. We show for both systems that the scheme is stable, and the error converges as O(ΔtT+log(1Δt)), $\mathcal{O}\big({\Delta t} \sqrt{T +\log(\frac{1}{{\Delta t}})}\big),$where Δt is the time step.
基于Robin-Robin耦合的松耦合非迭代分时方案:抛物型/抛物型和抛物型/双曲型问题的统一分析
摘要提出了一种基于Robin-Robin耦合条件的松耦合非迭代时分裂方案。我们将该格式统一地应用于抛物型/抛物型耦合系统和抛物型/双曲型耦合系统。对于这两个系统,我们证明了该方案是稳定的,并且误差收敛为O(ΔtT+log(1Δt)), $\mathcal{O}\big({\Delta t} \sqrt{T +\log(\frac{1}{{\Delta t}})}\big),$,其中Δt是时间步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信