{"title":"Quantum Stochastic Products and the Quantum Convolution","authors":"P. Aniello","doi":"10.7546/GIQ-22-2021-64-77","DOIUrl":null,"url":null,"abstract":"A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-22-2021-64-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
A quantum stochastic product is a binary operation on the space of quantum states preserving the convex structure. We describe a class of associative stochastic products, the twirled products, that have interesting connections with quantum measurement theory. Constructing such a product involves a square integrable group representation, a probability measure and a fiducial state. By extending a twirled product to the full space of trace class operators, one obtains a Banach algebra. This algebra is commutative if the underlying group is abelian. In the case of the group of translations on phase space, one gets a quantum convolution algebra, a quantum counterpart of the classical phase-space convolution algebra. The peculiar role of the fiducial state characterizing each quantum convolution product is highlighted.