J. Sutherland, D. Evans, J. Carrivick, J. Shulmeister, H. Rother
{"title":"A model of ice-marginal sediment-landform development at Lake Tekapo, Southern Alps, New Zealand","authors":"J. Sutherland, D. Evans, J. Carrivick, J. Shulmeister, H. Rother","doi":"10.1080/04353676.2022.2084591","DOIUrl":null,"url":null,"abstract":"ABSTRACT The extent of the Southern Alps icefield in New Zealand is well-constrained chronologically for the last glacial cycle. The sediment-landform imprint of this glacial system, however, offers insight into ice-marginal processes that chronological control cannot. We present the first detailed investigation of sediments along the southwestern shores of Lake Tekapo, South Island. We identify seven lithofacies, from which a five-stage palaeoglaciological reconstruction of depositional and glaciotectonic events is proposed: (i) ice-marginal advance and deposition of outwash gravels in lithofacies (LF) 1; (ii) ice-marginal recession and the development of an ice-contact lake, manifest in rhythmite deposition and iceberg rafting of dropstones (LF 2), followed by a depositional hiatus; (iii) ice-marginal recession recorded in ice-proximal aggradation of glaciofluvial hyperconcentrated flows (LFs 3, 4); (iv) ice-marginal advance documented by glaciotectonic disturbance and localized hydrofracturing, coeval with the deposition of delta foresets and a subglacial diamicton/till (LFs 5, 6); (v) final stages of ice-marginal recession and deposition of outwash gravels in LF 7. Two infrared stimulated luminescence ages were obtained from the glaciolacustrine sediments and, whilst the dating has some limitations, the sediments pre-date both the global and local Last Glacial Maximum. Overall, this sequence, consistent with sediment fills recorded elsewhere across South Island, suggests recurrence of processes from different glacial advances and the role of topographic constraints on maintaining lake positions.","PeriodicalId":55112,"journal":{"name":"Geografiska Annaler Series A-Physical Geography","volume":"81 1","pages":"151 - 182"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografiska Annaler Series A-Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/04353676.2022.2084591","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The extent of the Southern Alps icefield in New Zealand is well-constrained chronologically for the last glacial cycle. The sediment-landform imprint of this glacial system, however, offers insight into ice-marginal processes that chronological control cannot. We present the first detailed investigation of sediments along the southwestern shores of Lake Tekapo, South Island. We identify seven lithofacies, from which a five-stage palaeoglaciological reconstruction of depositional and glaciotectonic events is proposed: (i) ice-marginal advance and deposition of outwash gravels in lithofacies (LF) 1; (ii) ice-marginal recession and the development of an ice-contact lake, manifest in rhythmite deposition and iceberg rafting of dropstones (LF 2), followed by a depositional hiatus; (iii) ice-marginal recession recorded in ice-proximal aggradation of glaciofluvial hyperconcentrated flows (LFs 3, 4); (iv) ice-marginal advance documented by glaciotectonic disturbance and localized hydrofracturing, coeval with the deposition of delta foresets and a subglacial diamicton/till (LFs 5, 6); (v) final stages of ice-marginal recession and deposition of outwash gravels in LF 7. Two infrared stimulated luminescence ages were obtained from the glaciolacustrine sediments and, whilst the dating has some limitations, the sediments pre-date both the global and local Last Glacial Maximum. Overall, this sequence, consistent with sediment fills recorded elsewhere across South Island, suggests recurrence of processes from different glacial advances and the role of topographic constraints on maintaining lake positions.
期刊介绍:
Geografiska Annaler: Series A, Physical Geography publishes original research in the field of Physical Geography with special emphasis on cold regions/high latitude, high altitude processes, landforms and environmental change, past, present and future.
The journal primarily promotes dissemination of regular research by publishing research-based articles. The journal also publishes thematic issues where collections of articles around a specific themes are gathered. Such themes are determined by the Editors upon request. Finally the journal wishes to promote knowledge and understanding of topics in Physical Geography, their origin, development and current standing through invited review articles.