Effect of Mangifera indica extracted CuO NPs on seed germination of Cicer arietinum and Vigna radiata: an insight on biochemical, physiological and computational studies
Ananya Kashyap, Madhubala Kumari, Suman Kumar, Samira Nazma, K. Mukherjee, D. Maity
{"title":"Effect of Mangifera indica extracted CuO NPs on seed germination of Cicer arietinum and Vigna radiata: an insight on biochemical, physiological and computational studies","authors":"Ananya Kashyap, Madhubala Kumari, Suman Kumar, Samira Nazma, K. Mukherjee, D. Maity","doi":"10.5185/amlett.2023.041735","DOIUrl":null,"url":null,"abstract":"Biosynthesized metal oxide nanoparticles are used as nano-fertilizers for sustainable agriculture as they have proven to be promising agents in increasing the germination rates and plant growth rate. Biosynthesis of copper oxide nanoparticles (CuO-NPs) was done for the first-time using extract of Mangifera indica leaves. Effects of assynthesized CuO NPs on the seed germination of two legume seeds are investigated at different concentrations (0 2.5 mg/ml). UV-Vis and EDX analysis confirm the formation of CuO NPs & FESEM images revealed spherical shape of NPs with particle size ranging from 105nm to 155nm. CuO-NPs also revealed to be highly stable in aqueous suspension with zeta potential value -21.1mV. Germination rate, root /shoot growth and protein estimated of Cicer arietinum and Vigna radiata seeds found to be highest at 2.5mg/ml and 1mg/ml concentration, respectively. Negative impact on germination rate and root/shoot growth was observed due to toxic effects when CuO-NPs were applied at higher concentration 2.5mg/ml to Vigna radiata seeds. Thus, it is concluded that optimum concentration of biosynthesized CuO-NPs can be used to enhance the growth of leguminous seeds because of their possible interaction with the proteins and their up-regulation as confirmed by bioinformatics studies and molecular docking of protein.","PeriodicalId":7281,"journal":{"name":"Advanced Materials Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5185/amlett.2023.041735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biosynthesized metal oxide nanoparticles are used as nano-fertilizers for sustainable agriculture as they have proven to be promising agents in increasing the germination rates and plant growth rate. Biosynthesis of copper oxide nanoparticles (CuO-NPs) was done for the first-time using extract of Mangifera indica leaves. Effects of assynthesized CuO NPs on the seed germination of two legume seeds are investigated at different concentrations (0 2.5 mg/ml). UV-Vis and EDX analysis confirm the formation of CuO NPs & FESEM images revealed spherical shape of NPs with particle size ranging from 105nm to 155nm. CuO-NPs also revealed to be highly stable in aqueous suspension with zeta potential value -21.1mV. Germination rate, root /shoot growth and protein estimated of Cicer arietinum and Vigna radiata seeds found to be highest at 2.5mg/ml and 1mg/ml concentration, respectively. Negative impact on germination rate and root/shoot growth was observed due to toxic effects when CuO-NPs were applied at higher concentration 2.5mg/ml to Vigna radiata seeds. Thus, it is concluded that optimum concentration of biosynthesized CuO-NPs can be used to enhance the growth of leguminous seeds because of their possible interaction with the proteins and their up-regulation as confirmed by bioinformatics studies and molecular docking of protein.