{"title":"Comparison of heating performance between inverter and cycled microwave heating of foods using a coupled multiphysics-kinetic model","authors":"Ran Yang, Qianyi Chen, Jiajia Chen","doi":"10.1080/08327823.2021.1877244","DOIUrl":null,"url":null,"abstract":"Abstract Non-uniform heating has been a challenging problem in microwave heating due to ‘standing wave pattern’ and ‘thermal runaway’ problems. Cycled microwave heating was used to improve microwave heating uniformity of frozen products, while a relatively new approach of inverter heating was claimed to help preserve food quality during thawing/heating. In this study, finite-element-method-based coupled multiphysics-kinetic models were developed, validated, and used to investigate these controversial results by comparing the heating performances of average temperature, heating non-uniformity, and nutritional value change between the inverter and cycled microwave heating of foods. The effect of food sizes/shapes and material properties (dielectric loss) was evaluated. Results showed that there was little difference in average temperature, heating uniformity, and Vitamin C content between cycled and inverter heating for different food products. A relatively more uniform heating and lower nutritional value degradation were observed for small size low loss material; however, the improvement was not significant enough to claim the benefit of inverter heating.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"18 1","pages":"45 - 65"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2021.1877244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract Non-uniform heating has been a challenging problem in microwave heating due to ‘standing wave pattern’ and ‘thermal runaway’ problems. Cycled microwave heating was used to improve microwave heating uniformity of frozen products, while a relatively new approach of inverter heating was claimed to help preserve food quality during thawing/heating. In this study, finite-element-method-based coupled multiphysics-kinetic models were developed, validated, and used to investigate these controversial results by comparing the heating performances of average temperature, heating non-uniformity, and nutritional value change between the inverter and cycled microwave heating of foods. The effect of food sizes/shapes and material properties (dielectric loss) was evaluated. Results showed that there was little difference in average temperature, heating uniformity, and Vitamin C content between cycled and inverter heating for different food products. A relatively more uniform heating and lower nutritional value degradation were observed for small size low loss material; however, the improvement was not significant enough to claim the benefit of inverter heating.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.