Finite element simulation of unbonded retrofitting system for a steel bridge in Australia

IF 0.9 Q4 ENGINEERING, CIVIL
A. Al-Mosawe, R. Al-Mahaidi, Dia Alwash, X. Zhao
{"title":"Finite element simulation of unbonded retrofitting system for a steel bridge in Australia","authors":"A. Al-Mosawe, R. Al-Mahaidi, Dia Alwash, X. Zhao","doi":"10.1080/13287982.2021.1872992","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pre-stressed unbonded retrofit (PUR) CFRP strengthening of steel structures is becoming a common method of strengthening metallic structures. This paper presents a comprehensive study on the use of the PUR CFRP-strengthening method for strengthening a steel bridge in Melbourne, Australia. Finite element analysis is performed in this study to model the entire bridge and the strengthened element, and the model is validated using actual on-site measurements which showed the stress developments of two girders before and after strengthening when a fully loaded truck passed over the bridge. A parametric study is performed to investigate the stress development of steel girders strengthened with the PUR system under different girder-deck levels of rigidity. The results showed a perfect match between the finite element modelling and actual measurements, and the effectiveness of the PUR system under critical conditions such as different girder-deck stiffness connection levels.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2021.1872992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT Pre-stressed unbonded retrofit (PUR) CFRP strengthening of steel structures is becoming a common method of strengthening metallic structures. This paper presents a comprehensive study on the use of the PUR CFRP-strengthening method for strengthening a steel bridge in Melbourne, Australia. Finite element analysis is performed in this study to model the entire bridge and the strengthened element, and the model is validated using actual on-site measurements which showed the stress developments of two girders before and after strengthening when a fully loaded truck passed over the bridge. A parametric study is performed to investigate the stress development of steel girders strengthened with the PUR system under different girder-deck levels of rigidity. The results showed a perfect match between the finite element modelling and actual measurements, and the effectiveness of the PUR system under critical conditions such as different girder-deck stiffness connection levels.
澳大利亚某钢桥无粘结加固系统有限元模拟
预应力无粘结加固(PUR) CFRP加固钢结构已成为一种常用的金属结构加固方法。本文介绍了使用PUR cfrp加固方法加固澳大利亚墨尔本一座钢桥的综合研究。本研究对整座桥梁和加固单元进行了有限元分析,并通过实际现场测量验证了模型的有效性,该模型显示了满载卡车通过桥梁时,加固前后两根主梁的应力发展情况。采用参数化方法研究了PUR体系加固钢梁在不同梁-桥面刚度水平下的应力发展规律。结果表明,有限元模型与实测结果吻合良好,在不同梁-甲板刚度连接水平等关键工况下,PUR系统的有效性得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信