Clustering support for inadequate test suite reduction

Carmen Coviello, Simone Romano, G. Scanniello, A. Marchetto, G. Antoniol, A. Corazza
{"title":"Clustering support for inadequate test suite reduction","authors":"Carmen Coviello, Simone Romano, G. Scanniello, A. Marchetto, G. Antoniol, A. Corazza","doi":"10.1109/SANER.2018.8330200","DOIUrl":null,"url":null,"abstract":"Regression testing is an important activity that can be expensive (e.g., for large test suites). Test suite reduction approaches speed up regression testing by removing redundant test cases. These approaches can be classified as adequate or inadequate. Adequate approaches reduce test suites so that they completely preserve the test requirements (e.g., code coverage) of the original test suites. Inadequate approaches produce reduced test suites that only partially preserve the test requirements. An inadequate approach is appealing when it leads to a greater reduction in test suite size at the expense of a small loss in fault-detection capability. We investigate a clustering-based approach for inadequate test suite reduction and compare it with well-known adequate approaches. Our investigation is founded on a public dataset and allows an exploration of trade-offs in test suite reduction. Results help a more informed decision, using guidelines defined in this research, to balance size, coverage, and fault-detection loss of reduced test suites when using clustering.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"28 1","pages":"95-105"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Regression testing is an important activity that can be expensive (e.g., for large test suites). Test suite reduction approaches speed up regression testing by removing redundant test cases. These approaches can be classified as adequate or inadequate. Adequate approaches reduce test suites so that they completely preserve the test requirements (e.g., code coverage) of the original test suites. Inadequate approaches produce reduced test suites that only partially preserve the test requirements. An inadequate approach is appealing when it leads to a greater reduction in test suite size at the expense of a small loss in fault-detection capability. We investigate a clustering-based approach for inadequate test suite reduction and compare it with well-known adequate approaches. Our investigation is founded on a public dataset and allows an exploration of trade-offs in test suite reduction. Results help a more informed decision, using guidelines defined in this research, to balance size, coverage, and fault-detection loss of reduced test suites when using clustering.
集群支持不足的测试套件减少
回归测试是一项重要的活动,但它可能是昂贵的(例如,对于大型测试套件)。测试套件缩减方法通过移除冗余的测试用例来加速回归测试。这些方法可分为适当或不适当。适当的方法减少测试套件,以便它们完全保留原始测试套件的测试需求(例如,代码覆盖率)。不充分的方法会产生减少的测试套件,只会部分保留测试需求。当不适当的方法以故障检测能力的小损失为代价导致测试套件大小的更大减少时,它是有吸引力的。我们研究了一种基于聚类的方法来减少不充分的测试套件,并将其与众所周知的适当方法进行比较。我们的调查是建立在一个公共数据集上的,并允许对测试套件减少中的权衡进行探索。使用本研究中定义的指导方针,结果有助于做出更明智的决策,以在使用集群时平衡缩减的测试套件的大小、覆盖率和故障检测损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信