Mental models, computational explanation and Bayesian cognitive science: Commentary on Knauff and Gazzo Castañeda (2023)

IF 2.5 3区 心理学 Q2 PSYCHOLOGY, EXPERIMENTAL
M. Oaksford
{"title":"Mental models, computational explanation and Bayesian cognitive science: Commentary on Knauff and Gazzo Castañeda (2023)","authors":"M. Oaksford","doi":"10.1080/13546783.2021.2022531","DOIUrl":null,"url":null,"abstract":"Abstract Knauff and Gazzo Castañeda (2022) object to using the term “new paradigm” to describe recent developments in the psychology of reasoning. This paper concedes that the Kuhnian term “paradigm” may be queried. What cannot is that the work subsumed under this heading is part of a new, progressive movement that spans the brain and cognitive sciences: Bayesian cognitive science. Sampling algorithms and Bayes nets used to explain biases in JDM can implement the Bayesian new paradigm approach belying any advantages of mental models theory (MMT) at the algorithmic level. Moreover, this paper argues that new versions of MMT lack a computational level theory and questions the grounds for MMTs much-vaunted generality. The paper then examines common ground on the importance of small-scale models/simulations of the world and the importance of argumentation in the social domain rather than individual reasoning. Finally, the paper concludes that although there may be prospects for moving reasoning research forward in a more collective, collaborative manner, many disagreements remain to be resolved.","PeriodicalId":47270,"journal":{"name":"Thinking & Reasoning","volume":"1 1","pages":"371 - 382"},"PeriodicalIF":2.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thinking & Reasoning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/13546783.2021.2022531","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Knauff and Gazzo Castañeda (2022) object to using the term “new paradigm” to describe recent developments in the psychology of reasoning. This paper concedes that the Kuhnian term “paradigm” may be queried. What cannot is that the work subsumed under this heading is part of a new, progressive movement that spans the brain and cognitive sciences: Bayesian cognitive science. Sampling algorithms and Bayes nets used to explain biases in JDM can implement the Bayesian new paradigm approach belying any advantages of mental models theory (MMT) at the algorithmic level. Moreover, this paper argues that new versions of MMT lack a computational level theory and questions the grounds for MMTs much-vaunted generality. The paper then examines common ground on the importance of small-scale models/simulations of the world and the importance of argumentation in the social domain rather than individual reasoning. Finally, the paper concludes that although there may be prospects for moving reasoning research forward in a more collective, collaborative manner, many disagreements remain to be resolved.
心智模型,计算解释和贝叶斯认知科学:评论Knauff和Gazzo Castañeda (2023)
Knauff和Gazzo Castañeda(2022)反对使用“新范式”一词来描述推理心理学的最新发展。本文承认,库恩的“范式”一词可能受到质疑。不能接受的是,这个标题下的工作是一个跨越大脑和认知科学的新进步运动的一部分:贝叶斯认知科学。抽样算法和贝叶斯网络用于解释JDM中的偏差,可以实现贝叶斯新范式方法,掩盖了心智模型理论(MMT)在算法层面上的任何优势。此外,本文认为新版本的MMT缺乏计算水平理论,并质疑MMT被大肆吹嘘的通用性的依据。然后,本文探讨了关于世界的小规模模型/模拟的重要性以及在社会领域而不是个人推理中论证的重要性的共同点。最后,论文得出结论,尽管有可能以更集体、合作的方式推动推理研究向前发展,但仍有许多分歧有待解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thinking & Reasoning
Thinking & Reasoning PSYCHOLOGY, EXPERIMENTAL-
CiteScore
6.50
自引率
11.50%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信