{"title":"Semi-supervised Pattern Learning for Extracting Relations from Bioscience Texts","authors":"Shilin Ding, Minlie Huang, Xiaoyan Zhu","doi":"10.1142/9781860947995_0033","DOIUrl":null,"url":null,"abstract":"A variety of pattern-based methods have been exploited to extract biological relations from literatures. Many of them require significant domain-specific knowledge to build the patterns by hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semisupervised model is presented to combine both unlabeled and labeled data for the pattern learning procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is refined in the evaluating phase by incorporating the domain knowledge provided by a relatively small labeled data. Comparative results show that labeled data, when used in conjunction with the inexpensive unlabeled data, can considerably improve the learning accuracy.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"25 1","pages":"307-316"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A variety of pattern-based methods have been exploited to extract biological relations from literatures. Many of them require significant domain-specific knowledge to build the patterns by hand, or a large amount of labeled data to learn the patterns automatically. In this paper, a semisupervised model is presented to combine both unlabeled and labeled data for the pattern learning procedure. First, a large amount of unlabeled data is used to generate a raw pattern set. Then it is refined in the evaluating phase by incorporating the domain knowledge provided by a relatively small labeled data. Comparative results show that labeled data, when used in conjunction with the inexpensive unlabeled data, can considerably improve the learning accuracy.